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Abstract. We explain the powerful rôle that operator-valued measures can play in quantizing any set
equipped with a measure, for instance a group (resp. group coset) with its invariant (resp. quasi-invariant)
measure. Coherent state quantization is a particular case. Such integral quantizations are illustrated with
two examples based on the Weyl-Heisenberg group and on the affine group respectively. An interesting
application of the affine quantization in quantum cosmology is mentioned, and we sketch a construction of
new coherent states for the hydrogen atom.

1. What is really quantization?
The word “quantization” is widely used in Physics, in Mathematics and in Signal Analysis. While the
meaning of quantization is perfectly clear to signal practitioners, the word singularly lacks precision in
the two former domains, as was stated in the following quotation:

First quantization is a mystery. It is the attempt to get from a classical description of a physical
system to a quantum description of the “same” system. Now it doesn’t seem to be true that
God created a classical universe on the first day and then quantized it on the second day. So
it’s unnatural to try to get from classical to quantum mechanics. Nonetheless we are inclined
to do so since we understand classical mechanics better. So we’d like to find a way to start with
a classical mechanics problem - that is, a phase space and a Hamiltonian function on it - and
cook up a quantum mechanics problem - that is, a Hilbert space with a Hamiltonian operator
on it. It has become clear that there is no utterly general systematic procedure for doing so
[1] (see also the recent Todorov’s review [2]).

In a nutshell, we might claim that “ One quantizes things one does not really know to obtain things
most of which one is unable to measure”.

Let us recall the basic procedure, which rests upon the canonical commutation rules (ccr). Starting
from a n-dimensional phase space or symplectic manifold, it is summarized by the map (n = 2):

(q, p) , {q, p} = 1 7→ (Q,P ) , [Q,P ] = i~I ,
f(q, p) 7→ f(Q,P ) 7→ (Symf)(Q,P ) .

But then what about singular f , e.g. the phase arctan(p/q)? What about barriers or other impassable
boundaries? Even the elegant Weyl-Wigner integral quantization [3, 4, 5, 6, 7], which we revisit in this
paper, is subject to serious difficulties when the geometry of the phase space is not euclidean.
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Let us propose here a definition resting on three minimal requirements, linearity, identity, self-
adjointness. More precisely, quantization is

(i) a linear map
Q : C(X) 7→ A(H)

where C(X) is a vector space of complex-valued functions f(x) on a set X and A(H) is a vector
space of linear operators

Q(f) ≡ Af
in some complex Hilbert space H such that

(ii) f = 1 is mapped to the identity operator I on H,
(iii) a real f is mapped to an (essentially) self-adjoint operator Af in H.

One is free to add further requirements onX and C(X), e.g., measure, topology, manifold, closure under
algebraic operations ...; to add physical interpretation about measurement of spectra of classical f ∈
C(X) or quantum A(H) to which are given the status of observables; to add dynamical considerations
as time evolution; finally to add the requirement of unambiguous classical limit of the quantum physical
quantities, the limit operation being associated with a change of scale.

2. Integral quantization[8, 9, 10]
2.1. Integral quantization: general setting
We start from a measure space (X, ν) where X is the set of things we “do not know well”. Suppose we
were able to build an X-labelled family of bounded operators,

X 3 x 7→ M(x) ∈ L(H) , (1)

on Hilbert space H, resolving the identity I:∫
X

M(x) dν(x) = I , in a weak sense. (2)

If the M(x)’s are positive and unit trace, we will use the standard notation for density matrices :

M(x) ≡ ρ(x) .

In this case, if X is equipped with a suitable topology, then the map

B(X) 3 ∆ 7→
∫

∆
ρ(x) dν(x)

may define a normalized positive operator-valued measure (POVM) m on the σ-algebra B(X) of Borel
sets

B(X) 3 ∆ 7→ m(∆) =

∫
∆
ρ(x) dν(x) .

Then the integral quantization of complex-valued functions f(x) on X is the linear map:

f 7→ Af =

∫
X
f(x)M(x) dν(x) . (3)

If this map makes sense, the operator Af in H has to be understood as the sesquilinear form,

Bf (ψ1, ψ2) =

∫
X
f(x) 〈ψ1|M(x)|ψ2〉 dν(x) , (4)
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defined on a dense subspace of H. Note that if f is real and at least semi-bounded, the Friedrich’s
extension [11] of Bf univocally defines a self-adjoint operator. If f is not semi-bounded, there is no
natural choice of a self-adjoint operator associated withBf (see for instance [12, 13]). A first observation
about the above construction is its probabilistic content when M(x) = ρ(x). Pick another (or the same)
family of positive unit trace operators X 3 x 7→ ρ̃(x) ∈ L+(H). Then we return to the classical world
through the construction of the so-called lower (Lieb) or covariant (Berezin) symbol:

Af 7→ f̌(x) :=

∫
X
f(x′) tr(ρ̃(x)ρ(x′)) dν(x′) , “lower symbol” , (5)

provided the integral be defined. Due to the fact that x′ 7→ tr(ρ̃(x)ρ(x′)) is also a probability distribution,
the map f 7→ f̌ should be viewed as a local averaging (a “blurring”) of the original f . It is also
a generalization of the so-called Bargmann-Segal transform (see for instance [14, 15]). Quantization
issues, e.g. spectral properties of Af , may be derived from functional properties of f̌ .

Moreover, equipped with such a map, a classical limit condition can be considered in the following
sense: given a scale parameter ε and a distance d(f, f̌):

d(f, f̌)→ 0 as ε→ 0 . (6)

Another interesting aspect of the integral quantization map is the granted possibility of quantizing
constraints: suppose that (X, ν) is a smooth n-dim. manifold on which is defined space D′(X)
of distributions as the topological dual of compactly supported n-forms on X [16]. Some of these
distributions, e.g. δ(u(x)), express geometrical constraints. Extending the map f 7→ Af to these objects
yields the quantum version Aδ(u(x)) of these constraints. There exists a different starting point, more in
Dirac’s spirit [17] and used in (Loop) Quantum Gravity and Quantum Cosmology. It would consist in
determining the kernel of the operator Au issued from integral quantization u 7→ Au. Both methods are
obviously not mathematically equivalent, except for a few cases. They are possibly physically equivalent,
i.e. indistinguishable in terms of measurement.

2.2. Covariant integral quantization based on Unitary Irreducible Representation
Let G be a Lie group with left Haar measure dµ(g), and let g 7→ U(g) be a unitary irreducible
representation (UIR) of G in a Hilbert space H. Let M a bounded operator on H. Suppose that the
operator

R :=

∫
G
M(g) dµ(g) , M(g) := U(g)MU †(g) , (7)

is defined in a weak sense. From the left invariance of dµ(g) we have U(g0)RU †(g0) =∫
G dµ(g)M(g0g) = R and so R commutes with all operators U(g), g ∈ G. Thus, from Schur’s Lemma,
R = cMI with

cM =

∫
G

tr (ρ0 M(g)) dµ(g) , (8)

where the unit trace positive operator ρ0 is chosen in order to make the integral convergent. The
resolution of the identity follows:∫

G
M(g) dν(g) = I , dν(g) := dµ(g)/cM . (9)

If UIR U is square integrable with |η〉 being an admissible (unit) vector for U , i.e. c(η) :=∫
G dµ(g) |〈η|U(g)η〉|2 < ∞, then the resolution of the identity is obeyed by coherent states for G:
|ηg〉 = U(g)|η〉, i.e. by ρ(g) = U(g) ρU †(g), where ρ = |η〉〈η|. (A nice and meaningful example of

8th International Symposium on Quantum Theory and Symmetries (QTS8) IOP Publishing
Journal of Physics: Conference Series 512 (2014) 012032 doi:10.1088/1742-6596/512/1/012032

3



group having square integrable UIR’s is the affine group, see Section 4). This allows a covariant integral
quantization of complex-valued functions on the group f 7→ Af =

∫
G ρ(g) f(g) dν(g) :

U(g)AfU
†(g) = AU(g)f , (10)

where (U(g)f)(g′) := f(g−1g′) (regular representation if f ∈ L2(G, dµ(g))). The Bargmann-Berezin-
Segal or “heat kernel” transform on G is then defined as f̌(g) :=

∫
G tr(ρ(g) ρ(g′)) f(g′) dν(g′).

In the absence of square-integrability of U over G, there may exist a definition of square-integrability
and related covariant coherent states with respect to a left coset manifold X = G/H , with H a closed
subgroup of G, equipped with a quasi-invariant measure ν. The most known example is the Weyl-
Heisenberg group (see below). For more details and examples see [9].

3. Weyl-Heisenberg covariant integral quantization(s)
W-H quantization(s)
We first recall the basic material and notations for the Weyl-Heisenberg (W-H) algebra and its Fock
or number representation Let H be a separable (complex) Hilbert space with orthonormal basis
e0, e1, . . . , en ≡ |en〉, . . . . Lowering and raising operators a and a† are defined by their action on
the basis:

a |en〉 =
√
n|en−1〉 , a|e0〉 = 0 , a† |en〉 =

√
n+ 1|en+1〉 , (11)

and the triplet {a, a†, I} generate the Weyl-Heisenberg algebra characterized by the canonical
commutation rule

[a, a†] = I . (12)

There results from (11) that the number operatorN := a†a is diagonal with spectrum N,N |en〉 = n|en〉.
It is well known that there exists an essentially unique UIR of the W-H algebra or group, at the root
of quantum mechanics. Its square integrability holds with respect to the center C ∼ R of the W-
H group, and the measure space which has to be considered here is the euclidean or complex plane
X = GWH/C ∼ C with measure d2z/π. To each z ∈ C corresponds the (unitary) displacement
operator D(z) :

C 3 z 7→ D(z) = eza
†−z̄a , D(−z) = (D(z))−1 = D(z)† . (13)

The ccr (12) or QM non commutativity is encoded by the addition formula

D(z)D(z′) = e
1
2

(zz̄′−z̄z′)D(z + z′) . (14)

The standard (i.e., Schrödinger-Klauder-Glauber-Sudarshan) CS [18] are then obtained by

|z〉 = D(z)|e0〉 . (15)

Let $(z) be a function on the complex plane obeying $(0) = 1 and chosen in such a way that the
operator-valued integral ∫

C
D(z)$(z)

d2z

π
:= M

defines (in a weak sense) a bounded operator M on H. Then the family of displaced M(z) :=
D(z)MD(z)† under the unitary action D(z) resolves the identity∫

C
M(z)

d2z

π
= I . (16)

This is a direct consequence of D(z)D(z′)D(z)† = ezz
′−zz′D(z′), of

∫
C e

zξ̄−z̄ξ d2ξ
π = πδ2(z) , and of

$(0) = 1 with D(0) = I .
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The resulting quantization map is given by

f 7→ Af =

∫
C
f(z)M(z)

d2z

π
=

∫
C
f̂(−z)D(z)$(z)

d2z

π
, (17)

where is involved the symplectic Fourier transform f̂(z) =
∫
C f(ξ) ezξ̄−z̄ξ d2ξ

π . The covariance with
respect to the translations reads as

Af(z−z0) = D(z0)Af(z)D(z0)† . (18)

Note the properties of Af resulting from properties of the weight function:

Af(−z) = PAf(z)P,∀ f ⇐⇒ $(z) = $(−z), ∀ z ,

A
f(z)

= A†f(z),∀ f ⇐⇒ $(−z) = $(z), ∀ z ,

where P =
∑∞

n=0(−1)n|en〉〈en| is the parity operator.
Now, the ccr is almost always the rule when $ is chosen real and even . Indeed we have in this case

Az = a , A
f(z)

= A†f(z) , (19)

or equivalently, with z = (q + ip)/
√

2,

Aq =
a+ a†√

2
:= Q , Ap =

a− a†

i
√

2
:= P , [Q,P ] = iI . (20)

Morover, iff |$(z)| = 1,

tr(A†fAf ) =

∫
C
|f(z)|2 d2z

π
, (21)

which means that the map L2(C, d2z/π) 3 f 7→ Af ∈ HHilbert−Schmidt is invertible through a trace
formula.

Cahill-Glauber weight
For instance let us choose as a weight function the exponential

$s(z) = es|z|
2/2 , Re s < 1 . (22)

This yields a diagonal M ≡ Ms with

〈en|Ms|en〉 =
2

1− s

(
s+ 1

s− 1

)n
, (23)

and so

Ms =

∫
C
D(z)$s(z)

d2z

π
=

2

1− s
exp

[
ln

(
s+ 1

s− 1

)
a†a

]
. (24)

The value s = −1 corresponds to the CS (anti-normal) quantization, since

M = lim
s→−1

2

1− s
exp

(
ln
s+ 1

s− 1
a†a

)
= |e0〉〈e0| , (25)
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and so

Af =

∫
C
D(z)MD(z)† f(z)

d2z

π
=

∫
C
|z〉〈z| f(z)

d2z

π
. (26)

The choice s = 0 implies M = 2P and corresponds to the Wigner-Weyl quantization. Then

Af =

∫
C
D(z) 2PD(z)† f(z)

d2z

π
. (27)

The case s = 1 is the normal quantization obtained in an asymptotic sense.
The function (22) was originally introduced by Cahill and Glauber [19, 20] in view of discussing the

problem of expanding an arbitrary operator as an ordered power series in a and a†, a typical question
encountered in quantum field theory, specially in quantum optics. Actually, they were not interested
in the question of quantization itself. Now, a very interesting feature of (22) is that the operator Ms is
positive unit trace class for s ≤ −1 (and only trace class if Re s < 0), i.e., is a density operator, Ms ≡ ρs.
Therefore, in the range s ≤ −1 the corresponding quantization has a consistent probabilistic content in
the sense that the operator-valued measure

C ⊃ ∆ 7→
∫

∆∈B(C)
D(z)MsD(z)†

d2z

π

is a POVM. Moreover, a Boltzmann-Planck expression with temperature T can be associated with this
lack of knowledge of the classical X = C, say a kind of noise temperature as we have in electronics.

Given an elementary quantum energy, say ~ω and with the temperature T -dependent s = − coth
~ω

2kBT
the density operator quantization is Boltzmann-Planck

ρs =

(
1− e−

~ω
kBT

) ∞∑
n=0

e
− n~ωkBT |en〉〈en| . (28)

Thus, the temperature-dependent operators ρs(z) = D(z) ρsD(z)† defines a Weyl-Heisenberg covariant
family of POVM’s on the phase space C, the null temperature limit case being the POVM built from
standard CS. We notice that the Weyl-Wigner integral quantization (s = 0) and its associated Wigner
function are out of the scope of this thermodynamic consideration.

Quantum harmonic oscillator according to $
We saw that any real even $ defining a bounded operator through (3) yields the ccr for the quantization
of the canonical pairs (z, z̄) or, equivalently (q, p). Actually it yields also the correct energy spectrum
for the harmonic oscillator. Indeed, we have

Aq2 = Q2 − ∂z∂z̄$|z=0 +
1

2

(
∂2
z$
∣∣
z=0

+ ∂2
z̄$
∣∣
z=0

)
,

Ap2 = P 2 − ∂z∂z̄$|z=0 −
1

2

(
∂2
z$
∣∣
z=0

+ ∂2
z̄$
∣∣
z=0

)
,

and so
A|z|2 ≡ AJ = a†a+

1

2
− ∂z∂z̄$|z=0 . (29)

where |z|2(= J) is the energy (or action variable) for the H.O. The difference between the ground
state energy E0 = 1/2 − ∂z∂z̄$|z=0, and the minimum of the quantum potential energy Em =
[min(Aq2) + min(Ap2)]/2 = − ∂z∂z̄$|z=0 is E0−Em = 1/2. So it is the (experimentally verified, see
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for instance [21]) half quantum (in appropriate units), independently of the particular quantization which
has been chosen. In the exponential Cahill-Glauber case $s(z) = es|z|

2/2 the above operators reduce to

A|z|2 = a†a+
1− s

2
, Aq2 = Q2 − s

2
, Ap2 = P 2 − s

2
.

More details and relevant references on this question are found in [22] where it is proven that these
constant shifts in energy are inaccessible to measurement.

Weyl-Heisenberg integral quantization with action-angle variables
With z =

√
J eiγ in action-angle (J, γ) notations for the harmonic oscillator, the quantization of f(J, γ),

2π-periodic in γ, yields formally

Af =

∫ +∞

0
dJ

∫ 2π

0

dγ

2π
f(J, γ)M

(√
Jeiγ

)
. (30)

We define the unitary representation θ 7→ UT(θ) of the unit circle S1 on the Hilbert space H as
UT(θ)|en〉 = ei(n+ν)θ|en〉, where ν is arbitrary real. If the operator M is diagonal, then one has the
angular covariance property:

UT(θ)AfUT(−θ) = AT (θ)f , T (θ)f(J, γ) = f(J, γ − θ) . (31)

In particular, let us quantize with coherent states, M(z) = ρ−1(z) = |z〉〈z|, the discontinuous 2π-
periodic angle function (γ)ג = γ for γ ∈ [0, 2π). In terms of the action-angle variables these CS read
as

|z〉 ≡ |J, γ〉 =
∑
n

√
pn(J)einγ |en〉 , (32)

where n 7→ pn(J) = e−JJn/n! is the Poisson distribution. Since the angle function is real and bounded,
its quantum counterpart Aג is a bounded self-adjoint operator, and it is covariant in the above sense. In
the basis |en〉, it is given by the infinite matrix:

Aג = π 1H + i
∑
n6=n′

Γ
(
n+n′

2 + 1
)

√
n!n′!

1

n′ − n
|en〉〈en′ | . (33)

This quantum angle has spectral measure with support [0, 2π]. Of course, plenty of similar quantum
angles are made possible with that freedom we have in choosing the weight function. It is an interesting
question to be considered from different viewpoints, particularly from measurement viewpoints based on
POVM, as they are described in [23, 24].

4. Affine quantization
General setting
This is the second basic illuminating example of the method. Like the above complex plane and abelian
group X = C, is viewed as the phase space for the motion of a particle on the line, the half-plane is a
group which can be viewed as the phase space for the motion of a particle on the half-line. Let us be
more precise. Our measure space (X, ν) is the upper half-plane X ≡ Π+ := {(q, p) | p ∈ R , q > 0}
equipped with the left invariant measure dq dp. Equipped with the multiplication (q, p)(q0, p0) =
(qq0, p0/q + p), q ∈ R∗+, p ∈ R, Π+ is viewed as the affine group Aff+(R) of the real line. Aff+(R)
has two non-equivalent UIR, U± [25, 26]. Both are square integrable and this is the rationale backing
the continuous wavelet analysis [27, 28, 29, 9]. The UIR U+ ≡ U is carried on by Hilbert space
H = L2(R∗+, dx):

U(q, p)ψ(x) = (eipx/
√
q)ψ(x/q) . (34)
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As we did for the Weyl-Heisenberg group, we pick a suitably localized weight function w(q, p) on the
half-plane such that the integral ∫

Π+

U(q, p)w(q, p) dq dp := M (35)

defines a bounded operator in a weak sense . Proceeding with the same construction as in (7), (8) and (9)
yields the resolution of the identity on∫

Π+

M(q, p)
dq dp

cw,M
= I , M(q, p) = U(q, p)MU †(q, p) , (36)

and the resulting covariant quantization based on the affine group:

f 7→ Af =

∫
Π+

f(q, p)M(q, p)
dq dp

cw,M
. (37)

Due to the square-integrability of U , the simplest choice to be made is M = |ψ〉〈ψ| = ρ0 where the
unit-norm state ψ ∈ L2(R†+, dx) ∩ L2(R†+, dx/x) (“fiducial vector” or “wavelet”) produces all affine
coherent states, i.e. wavelets, defined as |q, p〉 = U(q, p)|ψ〉. Resolution of the identity and resulting
covariant quantization now read:∫

Π+

|q, p〉〈q, p| dq dp

2πc−1
= I , cγ :=

∫ ∞
0
|ψ(x)|2 dx

x2+γ
, (38)

f 7→ Af =

∫
Π+

f(q, p)|q, p〉〈q, p| dq dp

2πc−1
. (39)

(Had we chosen U− we would produce identical results. It is just a matter of taste between negative or
positive half-line.) The quantization is canonical for q and p, in the sense that the ccr gives i times a
constant:

Ap = P = −i∂/∂x , Aqβ = (cβ−1/c−1)Qβ , Qf(x) = xf(x) . (40)

Note the multiplicative factor of Qβ , absent in the W-H quantization: this is the price to pay for dealing
with dilations. Now, the important point concerns the quantization of the kinetic energy:

Ap2 = P 2 +KQ−2 , K = K(ψ) =

∫ ∞
0

(ψ′(u))2 u
du

c−1
. (41)

Thus, due to the presence of repulsive (∼ centrifugal) potential this affine or wavelet quantization
prevents a quantum free particle moving on the positive line from reaching the origin. We know (see
[11]) that the operator P 2 = −d2/dx2 alone, in L2(R∗+, dx), is not essentially self-adjoint whereas the
above regularized operator, defined on the domain C∞0 (0,∞) of smooth compactly supported functions,
is essentially self-adjoint for K ≥ 3/4. Then quantum dynamics of the free motion is possible.

Quantum states and their dynamics have phase space representation through lower symbols. With a
state |φ〉 is associated the probability distribution on the phase space:

ρφ(q, p) =
1

2πc−1
|〈q, p|φ〉|2 .

With energy eigenstates at our disposal, we can compute the time evolution for any state and the formula
for the associated time-dependent probability distribution follows.

The integral quantization based on the affine group has recently found interesting applications in
quantum cosmology, where the singularity at zero volume of the universe is naturally regularized with
such a scheme [30, 31]. Note that proceeding in quantum theory with an “affine” quantization instead
of the Weyl-Heisenberg quantization was already present in Klauder’s work devoted to the question of
dealing with singularities in quantum gravity [32, 33]. The procedure rests on the representation of the
affine Lie algebra. In this sense, it remains closer to the canonical one and it is not of the integral type.
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As a byproduct: affine CS for central potentials, e.g. Coulomb-Kepler
We sketch now the content of a work in progress [34] where we partly use the material presented in this
paper. We know that the construction of coherent states for the hydrogen atom which would have as much
rich properties as the standard CS have for the harmonic oscillator is still an open (if solvable!) problem.
Several systems of CS have been proposed since Schrödinger’s original work, derived mainly from the
groups SU(1,1) and SO(4,2), although in a regularized sense (the latter group is the full dynamical
group of the H-atom; the former is the subgroup describing its radial motion only), but none of them
is fully convincing (see [35] for a list of references). The construction that we propose is based on the
above affine CS for the radial part and on the Kowalski-Rembielinski-Hall-Mitchell CS for the angular
part. Indeed, we expect that both have good localization properties in the phase space for the motion
of a charged particle submitted to the Coulomb potential. We know that the quantum hamiltonian
H = −∆ + k/r2 − g/r with domain C∞0 (R3) in L2(R3, d3r) is self-adjoint [11]. Using spherical
coordinates r = (r, ŷ) , a state Ψ(r) in L2(R3, d3r) factorizes as

Ψ(r) = rψ(r)Y(ŷ) , (42)

where ψ ∈ L2(R+, dr) and Y ∈ L2(S2, dŷ), where ŷ is the SO(3) invariant measure on the 2-sphere.
Use the material above with a suitable fiducial vector ψ(r) yields affine CS for the radial part which are
labeled by points (qr, pr) of the upper half-plane:

Rqr,pr(r) = (U(qr, pr)ψ) (r) .

Now, the phase space for the motion on sphere S2 = {x ∈ R3 , x2 =
∑

k x
2
k = 1} is realized as the

complexified sphere S2
C

T ∗(S2) ' S2
c = {a = (a1, a2, a3) ∈ C3 : a2 =

∑
k

a2
k = 1} , (43)

with, in suitable units,

a = (cosh J)x + i
1

J
(sinh J)p , J = ‖x ∧ p‖ , x · p = 0 . (44)

The Kowalski-Rembieliński coherent states |ζa〉 are realized as elements of the Hilbert space L2(S2, dŷ)
as follows

ζa(ŷ) == (2π)−1 e
1/8

√
π

∫ π

Ω

dφ√
cosΩ − cosφ

, (45)

which depends only on the complex angle Ω = Ω(a, ŷ) defined through analytic continuation by

cosΩ = a · ŷ = (cosh J)x · ŷ + i
1

J
(sinh J)p · ŷ . (46)

They solve the identity in L2(S2
c , dµh) with an explicit measure given in [36, 37]. Finally, the coherent

states for the particle read
Zqr,pr,a(r) = rRqr,pr(r) ζa(ŷ) . (47)

5. Conclusion
Beyond the freedom (think to the analogy with Signal Analysis where different techniques are employed
in a complementary way) allowed by integral quantization, the advantages of the method with regard to
other quantization procedures in use are of four types.

(i) The minimal amount of constraints imposed to the classical objects to be quantized.

8th International Symposium on Quantum Theory and Symmetries (QTS8) IOP Publishing
Journal of Physics: Conference Series 512 (2014) 012032 doi:10.1088/1742-6596/512/1/012032

9



(ii) Once a choice of (positive) operator-valued measure has been made, which must be consistent
with experiment, there is no ambiguity in the issue, contrarily to other method(s) in use (think in
particular of the ordering problem). To one classical object corresponds one and only one quantum
object. Of course different choices are requested to be physically equivalent

(iii) The method produces in essence a regularizing effect, at the exception of certain choices, like the
Weyl-Wigner integral quantization.

(iv) The method, through POVM choices, offers the possibility to keep a full probabilistic content. As a
matter of fact, the Weyl-Wigner integral quantization does not rest on a POVM.

But what is the real meaning of that freedom granted to us in the choice of POVM or others? Such a
freedom is governed by our degree of confidence in localizing a pure classical state (q, p) in phase space.
The latter is usually viewed as an ideal continuous manifold where all points are physically accessible. As
everybody knows, such a view is physically untenable ... However, and this is the paradoxical paradigm
of contemporary physics, one needs such a leibnizian mathematical ideality (natura non saltum facit) to
build a more realistic, though still highly mathematical, representation of the physical world.
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