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Abstract. The quantum finance symmetries are studied. In order to do this, the one
dimensional free non-relativistic particle and its symmetries are revisited and the particle mass
is identified as the inverse of square of the volatility. Furthermore, using financial variables, a
Schrödinger algebra representation is constructed. In addition, it is shown that the operators
of this last representation are not hermitian and not conserved.

1. Introduction
Lately, mathematical techniques developed in physics have been employed to study systems
from other areas. For example, the Black-Scholes-Merton equation [1, 2] is important in the-
oretical finance and it can be mapped to the one dimensional free Schrödinger equation [3].
Then, mathematical techniques that arise in quantum mechanics can be used to study financial
phenomena, this fact allowed the birth of a new discipline, the so call Quantum Finance [3].
Now, it is well known that when symmetries are present in a physical system we can get at the
properties of a system without completely solving all the equations that describe the system, in
fact symmetries imply conserved quantities. The conformal symmetry is important in physics,
for example the relativistic conformal group is the largest symmetry group of special relativity
[4]. In addition, the free Schrödinger equation is invariant under the Schrödinger group, which is
a non-relativistic conformal group [5, 6]. It is worth mentioning that in 1882 Sophus Lie showed
that the Fick equation, which describes diffusion, is invariant under the Schrödinger group [7].

In this paper, it will be shown that the Black-Scholes-Merton equation is invariant under
the Schrödinger group. In order to do this, the one dimensional free non-relativistic particle
and its symmetries will be revisited. To get the Black-Scholes-Merton equation symmetries, the
particle mass is identified as the inverse of square of the volatility. Furthermore, using financial
variables, a Schrödinger algebra representation is constructed. In addition, it is shown that the
operators of this last representation are not hermitian and not conserved.

This paper is organized as follows: in section 2 we provide a brief overview of the one
dimensional non-relativistic free particle and its symmetries; in section 3 the one dimensional
free Schrödinger equation and its symmetries are studied; in section 4 the Black-Scholes-Merton
equation and its symmetries are studied. Finally, in section 5 a summary is given.
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2. Free particle
The action for one-dimensional non-relativistic free particle is given by

S =

∫
dt
m

2

(
dx

dt

)2

, (1)

this is the simplest mechanical system. Now, using the coordinates transformation

t′ =
αt+ β

γt+ δ
, x′ =

ax+ vt+ c

γt+ δ
, a2 = αδ − βγ 6= 0, (2)

where α, β, γ, δ, a, v, c are constants, the action (1) transforms as

S′ =

∫
dt′
m

2

(
dx′

dt′

)2

= S +
m

2

∫
dt

(
dφ(x, t)

dt

)
, (3)

where

φ(x, t) =
1

a2

(
2avx+ v2t− γ (ax+ vt+ c)2

γt+ δ

)
. (4)

Then, the equation of motion for one dimensional free particle is invariant under the conformal
coordinate transformations (2). This coordinates transformation includes temporal translations

t′ = t+ β, x′ = x, (5)

spatial translations

t′, x′ = x+ c, (6)

Galileo‘s transformations

t′, x′ = x+ vt, (7)

anisotropic scaling

t′ = a2t, x′ = ax (8)

and the special conformal transformations

t′ =
1

γt+ 1
, x′ =

x

γt+ 1
. (9)

It is shown below that the conformal coordinate transformations (2) and the quantity (4) are
useful to study Black-Scholes-Merton equation symmetries.

2.1. Conservative quantities
For the one dimensional non-relativistic particle, the following quantities

P = mẋ, (10)

H =
P 2

2m
, (11)

G = tP −mx, (12)

K1 = tH − 1

2
xP, (13)

K2 = t2H − txP +
m

2
x2 (14)
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are conserved.

The momentum P is associated with spatial translations (6). The Hamiltonian H is associ-
ated with temporal translations (5) . The quantity G is associated with Galileo‘s transformations
(7). While K1 is associated with anisotropic scaling (8) and K2 is associated with the special
conformal transformations (9).

Furthermore, using the Poisson brackets, it can be shown that the following relations

{P,H} = 0, (15)

{P,K1} =
1

2
P, (16)

{P,K2} = G, (17)

{P,G} = m, (18)

{H,K1} = H, (19)

{H,G} = P, (20)

{H,K2} = 2K1, (21)

{K1,K2} = K2, (22)

{K1, G} =
1

2
G, (23)

{K2, G} = 0 (24)

are satisfied.

2.2. Schrödinger group
In quantum mechanics, if a particle is in x0 at time t0, the amplitude to travel to x in a time
T = t− t0 is given by

U(x, t;x0, t0) =

(
m

2πi(t− t0)

) 1
2

e
i
h̄

∫ t
t0
dt̃m

2 ( dx
dt̃

)
2

, (25)

which satisfies the Schrödinger equation

ih̄
∂U(x, t;x0, t0)

∂t
= − h̄2

2m

∂2U(x, t;x0, t0)

∂x2
. (26)

Now, in another system with coordinates x′, t′, x′0, t
′
0 we have the amplitude

U ′(x′, t′;x′0, t
′
0) =

(
m

2πi(t′ − t′0)

) 1
2

e
i
h̄

∫ t′
t′
0
dt̃′m

2

(
dx′
dt̃′

)2

, (27)

which satisfies the Schrödinger equation (26) on primed coordinates (x′, t′). In addition, using
the conformal transformations (2) we have

t′ =
αt+ β

γt+ δ
, x′ =

ax+ vt+ c

γt+ δ
, (28)

t′0 =
αt0 + β

γt0 + δ
, x′0 =

ax0 + vt0 + c

γt0 + δ
. (29)
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Notice that, without loss of generality, we can take x0 = 0 and t0 = 0, in this case

t′ − t′0 =
a2t

δ(γt+ δ)
. (30)

Then, using the equation (3), we have

U ′(x′, t′;x′0, t
′
0) =

√
δ

a2

(√
γt+ δ

)
e
im
2h̄
φ(x,t)U(x, t; 0, 0), (31)

where φ(x, t) is given by (4). Now, due that U(x, t;x0, t0) is solution for the Schrödinger equation
(26) on coordinates (x, t), and U ′(x′, t′;x′0, t

′
0) satisfies the same equation on primed coordinates

(x′, t′), the expression (31) implies that the Schrödinger equation for the one dimensional non-
relativistic free particle

ih̄
∂ψ (x, t)

∂t
= − h̄2

2m

∂2ψ(x, t)

∂x2
(32)

is invariant under the conformal coordinate transformations (2), where the wave function
transforms as

ψ′
(
x′, t′

)
=
(√

γt+ δ
)
e
im
2h̄
φ(x,t)ψ(x, t), (33)

and φ(x, t) is given by (4).

Using other methods, the conformal symmetry for the free Schrödinger equation was found
by Niederer and Hagen in 1972 [6, 5]. However, this symmetry was obtained by S. Lie in 1882
while he was studying the Fick equation [7].

Furthermore, according to quantum mechanics, the quantities (10)-(14) are represented by
the operators

P̂ = −ih̄ ∂
∂x
, (34)

Ĥ =
P̂ 2

2m
, (35)

Ĝ = tP̂ −mx, (36)

K̂1 = tĤ − 1

4

(
xP̂ + P̂ x

)
, (37)

K̂2 = t2Ĥ − t

2

(
xP̂ + P̂ x

)
+
m

2
x2. (38)

These operators satisfy the Schrödinger algebra[
P̂ , Ĥ

]
= 0, (39)[

P̂ , K̂1

]
=

ih̄

2
P̂ , (40)[

P̂ , K̂2

]
= ih̄Ĝ, (41)[

P̂ , Ĝ
]

= ih̄m, (42)
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[
Ĥ, K̂1

]
= ih̄Ĥ, (43)[

Ĥ, Ĝ
]

= ih̄P̂ , (44)[
Ĥ, K̂2

]
= 2ih̄K̂1, (45)[

K̂1, K̂2

]
= ih̄K̂2, (46)[

K̂1, Ĝ
]

=
ih̄

2
Ĝ, (47)[

K̂2, Ĝ
]

= 0, (48)

which is similar to the algebra (15)-(24). It is possible to show that the operators (34)-(38) are
conserved.

In the next section, it will be shown that Black-Scholes-Merton equation is invariant under
Schrödinger symmetry.

3. The Black-Scholes-Merton equation and the Black-Scholes Formula
Today, an esential question in financial world refers to how obtain the price of an option.
Financial markets use the Black-Scholes option pricing model and it is the basis of sophisticated
methods of options valuation. A remarkable result in this field is given by the Black-Scholes-
Merton equation [1, 2]

∂C(s, t)

∂t
= −σ

2

2
s2∂

2C(s, t)

∂s2
− rs∂C(s, t)

∂s
+ rC(s, t), (49)

where C is the price of an option, s is the price of the stock, σ is the volatility and r is the
annualized risk-free interest rate. The Black-Scholes-Merton equation have to be solved with
condition

C(s, T ) = (s−K)θ(s−K), (50)

where K is the strike price of an option, T is the time to expiration and θ(x) is the Heaviside
function.

Amazingly, the Black-Scholes-Merton equation (49) is equivalent to the Schrödinger equation
[3]. In fact, using the change of variable

s = ex (51)

in the equation (49), the following result

∂C(x, t)

∂t
= −σ

2

2

∂2C(x, t)

∂x2
+

(
σ2

2
− r

)
∂C(x, t)

∂x
+ rC(x, t). (52)

is gotten. Additionally, if

C(x, t) = e

[
1
σ2

(
σ2

2
−r
)
x+ 1

2σ2

(
σ2

2
+r

)2

t

]
Ψ(x, t) (53)

8th International Symposium on Quantum Theory and Symmetries (QTS8) IOP Publishing
Journal of Physics: Conference Series 512 (2014) 012029 doi:10.1088/1742-6596/512/1/012029

5



the following equation

∂Ψ(x, t)

∂t
= −σ

2

2

∂2Ψ(x, t)

∂x2
(54)

is obtained, which is Schrödinger-like wave equation (32). Notice that 1/σ2 has the role of
particle mass m. In addition, with the change of variable τ = T − t, we get

∂Ψ(x, τ)

∂τ
=
σ2

2

∂2Ψ(x, τ)

∂x2
, (55)

which is the heat equation.

Now, using the solution for the free Schrödinger equation, we can get the solution for the
Black-Sholes-Merton equation. In fact, using the initial condition (50) we get

C(s, t) = sN(d+)−Ke−r(T−t)N(d−) (56)

where

N(z) =

∫ z

−∞
du
e−

u2

2

√
2π

, d± =
ln
(
s
K

)
+ (T − t)

(
r ± σ2

2

)
σ
√
T − t

.

The equation (56) is the so call Black-Scholes formula and it can be obtained using quantum
mechanics techniques.

4. The Schrödinger group and the Black-Scholes-Merton equation
Due that the Schrödinger equation (32) is invariant under conformal transformation (2), the
equation (55) is invariant under the same transformation. In this case the function ψ(x, t)
transforms as

Ψ′
(
x′, t′

)
=
(√

γt+ δ
)
e

1
2σ2 φ(x,t)Ψ(x, t), (57)

where φ(x, t) is given by (4). Notice that the particle mass m is changed for 1/σ2.

Using the change of variable (51), the coordinate transformations (2) can be written as

t′ =
αt+ β

γt+ δ
, s′ = e

(
vt+c
γt+δ

)
s
(

a
γt+δ

)
. (58)

Through a long but straightforward calculation, it can be shown that the Black-Scholes-Merton
equation (49) is invariant under this last transformation, where the price C(s, t) transforms as

C ′
(
s′, t′

)
=

(√
γt+ δ

)
sΦ1(s,t)eΦ2(s,t)C(s, t), (59)

here

Φ1(s, t) =
−2a2γ

(
σ2

2 − r
)
t+ 2a (vδ − γc) + 2a2(a− δ)

(
σ2

2 − r
)

2a2σ2 (γt+ δ)

− γa2 (ln s)

2a2σ2 (γt+ δ)
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and

Φ2(s, t) =

a2
(
σ2

2 + r
)2

(α− δ) + 2a2v
(
σ2

2 − r
)

+ v (vδ − 2γc)

2σ2a2(γt+ δ)

 t
+
a2β

(
σ2

2 + r
)2

+ 2a2
(
σ2

2 − r
)
c− γc2 − γa2

(
σ2

2 + r
)2
t2

2σ2a2(γt+ δ)
.

Now, the Black-Scholes-Merton equation (49) can be written as

∂C(s, t)

∂t
= ĤC(s, t), (60)

where

Ĥ = −σ
2

2
s2 ∂

2

∂s2
− rs ∂

∂s
+ r. (61)

Moreover, using the operator

Π̂ = −is ∂
∂s

+
i

σ2

(
σ2

2
− r

)
, (62)

the operator Ĥ can be rewritten as

Ĥ =
σ2

2
Π̂2 +

1

2σ2

(
σ2

2
+ r

)2

. (63)

Notice that the operator Ĥ is similar to the Hamiltonian operator Ĥ (35), where the particle
mass m is associated with 1/σ2. However, the operator Ĥ is not hermitian.

Additionally, using the operator (62) it is possible construct quantities related with the non-
relativistic free particle conserved quantities (34)-(38). In fact, the operators

Π̂ = −is ∂
∂s

+
i

σ2

(
σ2

2
− r

)
, (64)

Ĥ0 =
σ2

2
Π̂2, (65)

Ĝ = tΠ̂− 1

σ2
ln s, (66)

K̂1 = tĤ0 −
1

4

(
ln sΠ̂ + Π̂ ln s

)
, (67)

K̂2 = t2Ĥ0 −
t

2

(
ln sΠ̂ + Π̂ ln s

)
+

1

2σ2
(ln s)2 (68)

can be constructed, which are similar to the quantities (34)-(38). Now, using the relation

[ln s, Π̂] = i, (69)

8th International Symposium on Quantum Theory and Symmetries (QTS8) IOP Publishing
Journal of Physics: Conference Series 512 (2014) 012029 doi:10.1088/1742-6596/512/1/012029

7



the algebra [
Π̂, Ĥ0

]
= 0, (70)[

Π̂, K̂1

]
=

i

2
Π̂, (71)[

Π̂, K̂2

]
= iĜ, (72)[

Π̂, Ĝ
]

=
i

σ2
, (73)[

Ĥ0, K̂1

]
= iĤ0 (74)[

Ĥ0, Ĝ
]

= iΠ̂, (75)[
Ĥ0, K̂2

]
= 2iK̂1, (76)[

K̂1, K̂2

]
= iK̂2, (77)[

K̂1, Ĝ
]

=
i

2
Ĝ, (78)[

K̂2, Ĝ
]

= 0. (79)

is satisfied. Then the operators (64)-(68) satisfy the Schrödinger algebra. However, the operators
(64)-(68) are not hermitian and are not conserved. Then, the equivalence between the Black-
Scholes-Merton and the free Schrödinger equation is not exactly, this last happen because the
transformation (53) is not unitary.

Using other methods, the Black-Scholes-Merton symmetries have been studied in [8].

5. Summary
It was shown that the Black-Scholes-Merton equation is invariant under the Schrödinger group.
In order to do this, the one dimensional free non-relativistic particle and its symmetries were
revisited. To get the Black-Scholes-Merton equation symmetries, the particle mass was identified
as the inverse of square of the volatility. Besides, using financial variables, a Schrödinger algebra
representation was constructed. However, the operators of this last representation are not
hermitian and not conserved.
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