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Abstract. First and second order supersymmetric transformations are applied to the
truncated harmonic oscillator to generate new Hamiltonians with known spectra. We also study
the effect of these transformations on the eigenfunctions of the initial Hamiltonian. Finally the
link between first and the second order supersymmetric partners of the truncated harmonic
oscillator which possess third-order differential ladder operators with the Painlevé IV equation
is used to obtain several solutions of this non-linear second-order differential equation.

1. Introduction
When generating quantum mechanical potentials with known spectra Supersymmetric Quantum
Mechanics (SUSY QM) has gained a major effectiveness [1–13]. It is well known that
the supersymmetric partners of the harmonic oscillator provide explicit realizations of the
polynomial Heisenberg algebras (PHA) [7, 14–16]. These are deformations of the oscillator
algebra, where the differential ladder operators are of order m+1 and the commutator between
them is a polynomial of order m in the Hamiltonian.

It is remarkable that systems characterized by second order PHA have been connected to
the Painlevé IV (PIV) equation [14, 17–21]. Conversely, if a Hamiltonian having third order
differential ladder operators and their extremal states are found, thus solutions to the PIV
equation can be generated in a simple way.

By means of this technique, plenty of non-singular solutions to the PIV equation have been
derived [11, 22, 23]. Now we will start making a systematic analysis of the singular solutions by
allowing the existence of one fixed singularity, which for simplicity will be placed at the origin.
Our treatment is based on the harmonic oscillator with an infinite potential barrier at x = 0,
(see e.g. [4, 24]), which we will call truncated harmonic oscillator. We are mainly interested in
transformations which reproduce again the singularity present in the initial potential. We shall
describe also the induced spectral modifications and the second order PHA characterizing the
new Hamiltonians, which will naturally lead to solutions to the PIV equation.

In order to achieve our goals, in Section 2 we will review briefly the SUSY QM and the way
in which Hamiltonians being intertwined with the harmonic oscillator realize the second order
PHA, connecting them later with the PIV equation and some of its solutions. In Section 3 we
will study the truncated harmonic oscillator and we will apply to it the first and second order
SUSY techniques. In Section 4 we will obtain several solutions to the PIV equation, either
non-singular or with a singularity at x = 0, by using the extremal states of the SUSY partner
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Hamiltonians of the truncated harmonic oscillator. Finally, in Section 5 we will emphasize the
original results contained in this paper as well as our conclusions.

2. Supersymmetric Quantum Mechanics
Supersymmetric quantum mechanical systems are characterized by three hermitian operators:
a supersymmetric Hamiltonian Hss and two supercharges Q1, Q2, satisfying the following
supersymmetry algebra with two generators [25]:

[Hss, Qi] = 0, {Qi, Qj} = δijHss, i, j = 1, 2, (1)

where [F,G] and {F,G} are the commutator and anticommutator of F and G respectively.
The simplest way to realize this algebra is to suppose that a pair of quantum Hamiltonians

H and H̃ with real potentials obey the intertwining relations [26]

H̃A+ = A+H ⇔ HA = AH̃, (2)

where

H = −1

2

d2

dx2
+ V (x), H̃ = −1

2

d2

dx2
+ Ṽ (x),

and operators A+ and A are differential intertwining operators of order k which satisfy

AA+ =
k∏

i=1

(H − εi), A+A =
k∏

i=1

(H̃ − εi), εi ∈ R. (3)

For the actual realization of (1) let us choose

Q1 =
Q+ +Q−

√
2

, Q2 =
Q+ −Q−

i
√
2

, Q+ =

(
0 A+

0 0

)
, Q− =

(
0 0
A 0

)
,

so that

Hss =

(
H̃ − ε1 0

0 H − ε1

)
...

(
H̃ − εk 0

0 H − εk

)
, i = 1, ..., k.

Since A+ and A are of k-th order, this representation is known as k-SUSY QM.

2.1. 1-SUSY
Let the operators A+ and A be of first order (in a system of units such that � = m = 1), i.e.,

A+ =
1√
2

[
− d

dx
+ α(x)

]
, A =

1√
2

[
d

dx
+ α(x)

]
, (4)

where α(x) is a real function of x. By plugging these expressions in the intertwining relations
(2) and then substituting α = [ln(u)]′ = u′/u it turns out that u must satisfy the stationary
Schrödinger equation −1

2u
′′+V u = εu, where ε is a real constant called factorization energy. In

addition, we obtain the following expression for the new potential:

Ṽ = V − α′ = V − [ln(u)]′′ . (5)

Hence, if we choose a nodeless seed solution u of the stationary Schrödinger equation (also called
transformation function) associated to a given factorization energy ε, then the intertwining
operators A+, A, and the new Hamiltonian H̃ become completely determined. Moreover,
departing from the normalized eigenfunctions ψn(x) of H associated to the eigenvalues En,
the corresponding ones φn(x) of H̃ are typically found through

φn(x) =
A+ψn(x)√
En − ε

. (6)

An additional eigenfunction φε(x) ∝ 1/u(x) of H̃, associated to ε, could exist. If φε(x) satisfies
the given boundary conditions then ε must be joined to the set of eigenvalues of H̃.

8th International Symposium on Quantum Theory and Symmetries (QTS8) IOP Publishing
Journal of Physics: Conference Series 512 (2014) 012024 doi:10.1088/1742-6596/512/1/012024

2



2.2. 2-SUSY
Let us suppose now that the intertwining operators A+ and A are of second order [26–31], i.e.,

A+ =
1

2

[
d2

dx2
− η(x)

d

dx
+ γ(x)

]
, A =

1

2

[
d2

dx2
+ η(x)

d

dx
+ η′(x) + γ(x)

]
. (7)

A similar treatment as for the previous subsection yields

Ṽ = V − η′ = V − [lnW (u1, u2)]
′′ . (8)

where W (u1, u2) = u1u
′
2 − u′1u2 is the Wronskian of two seed solutions u1,2 of the stationary

Schrödinger equation associated to ε1,2 respectively.
In this fashion, if u1,2 are choosen such that W (u1, u2) is nodeless inside the domain of

V (x), it turns out that A+, A, and H̃ become once again completely determined. Moreover,
the eigenfunctions φn(x) of H̃ associated to the eigenvalues En become obtained typically from
those ψn(x) of H through the standard expression:

φn(x) =
A+ψn(x)√

(En − ε1)(En − ε2)
. (9)

Two extra eigenfunctions φε1(x) ∝ u2
W (u1,u2)

, φε2(x) ∝ u1
W (u1,u2)

of H̃, associated to the eigenvalues

ε1,2, could exist [26]. If φε1,2(x) satisfy the given boundary conditions then ε1,2 must be included

in the spectrum of H̃.

2.3. Polynomial Heisenberg Algebras
The polynomial Heisenberg algebras (PHA) can be seen as deformations of the harmonic
oscillator algebra, for which two standard commutation relations remain [H, L±] = ±L± and
the third one defines the deformation

[L−, L+] ≡ N(H+ 1)−N(H) = Pm(H), (10)

where N(H) ≡ L+L− is a polynomial of degree m+ 1 in the Hamiltonian H factorized as,

N(H) =
m+1∏
i=1

(H− εi), (11)

so that Pm(H) becomes of degree m [16].
Let us realize these PHA by expressing the commutation relation which involves H and L+

in the standard intertwining form:

(H− 1)L+ = L+
H.

A comparison with (2) makes it natural to identify H = H, H̃ = H − 1, A+ = L+, A = L−,
k = m+ 1 and εi = εi − 1. Thus, (3) automatically leads to the commutation relation of (10).

Let us consider now a function φ(x) in the kernel of L−, which in turn meets

N(H)φ = L+L−φ = 0.

Since the kernel of L− is invariant under the action of H, we can choose as the linearly
independent functions generating this subspace the solutions of the stationary Schrödinger
equation for H associated to εi, Hφεi = εiφεi .
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Looking for the more general systems ruled by PHA with m = 0, 1 we arrive to the harmonic
oscillator and effective ‘radial’ oscillator potentials (which have ladder operators of first and
second orders respectively). On the other hand, for m = 2 (third order ladder operators which
will be denoted by l±) the corresponding potential turns out to be determined by a function which

satisfies the PIV equation [7]. In order to see this explicitly, let us assume thatH = −1
2

d2

dx2+V(x),

and l+ = I+1 I+2 , l− = I−2 I−1 , where

I+1 =
1√
2

[
− d

dx
+ f(x)

]
, I+2 =

1

2

[
d2

dx2
+ g(x)

d

dx
+ h(x)

]
.

The previous factorized expressions for l± are useful since it is employed an auxiliar Hamiltonian

Ha = −1
2

d2

dx2 + Va(x) which is intertwined with H as follows: (H− 1)I+1 = I+1 Ha, HaI
+
2 = I+2 H.

By using then the formulae obtained for 1-SUSY and 2-SUSY and after several calculations we
arrive to the following final result:

V =
x2

2
− g′

2
+

g2

2
+ xg + ε1 − 1

2
, (12)

where g(x) satisfies the Painlevé IV equation,

g′′ =
(g′)2

2g
+

3

2
g3 + 4xg2 + 2(x2 − a)g +

b

g
,

with parameters a = ε2 + ε3 − 2ε1 − 1, b = −2(ε2 − ε3)
2.

Therefore, given a solution g of the PIV equation with parameters a = ε2 + ε3 − 2ε1 − 1,
b = −2(ε2 − ε3)

2, ε1,2,3 ∈ R, we can construct a system obeying a second-order PHA,
characterized by the potential in (12).

Let us recall that εi, i = 1, 2, 3 are the three roots involved in (11) for m = 2, which at the
same time coincide with the energies for the three extremal φεi of H, i.e., l−φεi = 0, i = 1, 2, 3.
We can obtain a simple analytic expressions for one of the extremal states [7]:

φε1 ∝ exp

(
−x2

2
−

∫
gdx

)
. (13)

This implies that if we find a system ruled by second-order PHA, in particular its extremal
states, then we can build solutions to the Painlevé IV equation as long as the extremal state is
not identically null. In order to see this, let us rewrite the expression for the extremal state φε1

of (13) in the form:
g(x) = −x− [lnφε1 ]

′, (14)

i.e., a solution g(x) to the PIV equation in terms of the extremal state φε1 of H has been found.

2.4. Harmonic Oscillator
When the k-SUSY technique is applied to the harmonic oscillator Hamiltonian

H = −1

2

d2

dx2
+

x2

2
,

k new levels below the ground state energy E0 = 1/2 of the oscillator can be created at the
positions defined by the factorization energies εj , j = 1, .., k involved in (3) [15, 26]. Supposing
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that this happens, then the eigenfunctions φn(x) of the new Hamiltonian H̃, associated to the
eigenvalues En = n+ 1/2 of the initial one H, are given by a generalization of (6) and (9):

φn(x) =
A+ψn(x)√

(En − ε1)...(En − εk)
.

Furthermore, the eigenfunctions φεj associated to the new levels εj can be written as

φεj ∝
W (u1, .., uj−1, uj+1, ..., uk)

W (u1, .., uk)
, j = 1, .., k, (15)

where W (u1, .., uk) is the Wronskian of the k seed solutions uj , j = 1, .., k used to implement
the transformation, which satisfy Huj = εjuj . Up to a constant factor, the general solution to

this equation with V (x) = x2

2 and ε arbitrary is given by

u(x) = e−x2/2

[
1F1

(
1− 2ε

4
;
1

2
;x2

)
+ 2ν

Γ(3−2ε
4 )

Γ(1−2ε
4 )

x 1F1

(
3− 2ε

4
;
3

2
;x2

)]
.

Thus, each uj takes this form with ε substituted by εj and ν by νj . For this transformation not
to be singular W (u1, .., uk) must not have zeros in the real axis. For simplicity let us assume
from now on that εk < εk−1 < ... < ε1 < E0 = 1/2. With this ordering W (u1, ..., uk) will not
have zeros if |νj | < 1 for j odd and |νj | > 1 for j even, and thus the new potential

Ṽ (x) =
x2

2
− [lnW (u1, ..., uk)]

′′

will not have singularities.
It is important to notice that the Hamiltonian H̃ has well defined ladder operators of order

2k + 1 [1,15]:
L+ = A+a+A, L− = A+a−A.

If k = 1 the ladder operators L± are of third order and {H̃, L+, L−} directly generates a
second order PHA. On the other hand, since A+ and A are of second order if k = 2, then L±
will be of fifth order in such a case. It is important to know under which circumstances L± can
be ‘reduced’ to third order ladder operators. The answer is contained in the following result [11]:
if the seed solutions u1(x) and u2(x) are such that u2 = a−u1 and ε2 = ε1 − 1, then L± can be
factorized as

L+ =
(
H̃ − ε1

)
l+, L− = l−

(
H̃ − ε1

)
,

where l+ and l− are third order differential ladder operators of H̃, such that [H̃, l±] = ±l±,
which also satisfy

l+l− = (H̃ − ε2)(H̃ − ε1 − 1)(H̃ − 1/2).

Now that we have identified the system having third-order differential ladder operators, we
can generate solutions to the PIV equation through its extremal states (see (14)).

3. Truncated harmonic oscillator
In what follows we will be interested in the Hamiltonian H0 = −1

2
d2

dx2 + V0(x) where

V0(x) =

{
x2

2 if x > 0
∞ if x ≤ 0.
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The eigenvalues of H0 take the form En = 2n+ 3
2 with corresponding eigenfunctions

ψn(x) = Cn x e
−x2/2

1F1

(
− n;

3

2
;x2

)
,

with n ∈ N and Cn = 2 (2n+1)!

π1/4n!

√
2−2n

(2n+1)! being normalization constants. These correspond to the

odd eigenfunctions of the standard harmonic oscillator normalized in the domain (0,∞), which
are the ones that satisfy the boundary conditions at x = 0 and in the limit x → ∞.

Further ahead we will also require the even eigenfunctions of the standard harmonic oscillator
normalized in the domain (0,∞),

χn(x) = Bn e
−x2/2

1F1

(
− n;

1

2
;x2

)
,

which are associated to En = 2n+ 1
2 , where n ∈ N and Bn = (2n)!

π1/4n!

√
21−2n

(2n)! are their normalization

constants. Although they satisfy H0χn = Enχn, they do not obey the boundary condition at
x = 0, and thus they are not eigenfunctions of H0.

3.1. 1-SUSY
Let us suppose now that H0 is intertwined with another Hamiltonian H1 = −1

2
d2

dx2 + V1 as in
(2), where the interwining operators A+, A are given by (4). Thus, a single transmformation
function u(x) is needed, which must satisfy the stationary Schrödinger equation:

−1

2
u′′ + V0u = εu. (16)

For x > 0, this equation has a general solution given by

u(x) = e−x2/2

[
b1 1F1

(
1− 2ε

4
;
1

2
;x2

)
+ b2 x 1F1

(
3− 2ε

4
;
3

2
;x2

)]
, (17)

b1, b2 being real constants [3]. The boundary conditions required for the eigenfunctions of the
new Hamiltonian H1 will be the same as for H0, i.e., to vanish at x = 0 and for x → ∞. Thus
the transformation function in (17) must have a well defined parity and we can very well identify
two different cases.

3.2. Odd transformation function
For an odd transformation function let us choose b1 = 0 and b2 = 1 in (17), which together with
the expression in (5) yield the potential

V1 = V0 +
1

x2
+ 1−

{
ln

[
1F1

(
3− 2ε

4
;
3

2
;x2

)]}′′
, x > 0. (18)

In this expression, the term 1
x2 induces in a natural way the vanishing boundary condition at

x = 0, while the term with the double derivative shows that transformations with ε > 3
2 are not

allowed since they generate additional singularities for x > 0.
As is shown in (6), an eigenfunction ψn(x) of H0 asociated to the eigenvalue En typically

transforms into an eigenfunction φn(x) of H1 asociated to En. In our case this remains true
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Figure 1. The potential V1 and its first three eigenfunctions obtained for an odd seed solution (a) and an even
one (b), both with factorization energy ε = −3.

(see however the next subsection), and when substituting the expressions for u(x) and ψn(x) we
obtain explicitly the eigenfunctions φn(x):

φn(x) = Dnx
2e−x2/2

{
4n

3
1F1

(
1− n;

5

2
;x2

)
+

(
1− 2

3
ε
)[

1F1(
7−2ε
4 ; 52 ;x

2)

1F1(
3−2ε
4 ; 32 ;x

2)

]
1F1

(
− n;

3

2
;x2

)}
,

with Dn = Cn√
2(En−ε)

being normalization constants. The corresponding energies En =

2n+ 3
2 , n = 0, 1, 2, . . . thus belong to the spectrum of H1. Some eigenfunctions φn(x) along with

their corresponding potential have been drawn in figure 1(a). In addition, since φε(x) ∝ 1/u(x)
diverges also for x = 0, then ε does not belong to the spectrum of H1.

The limit case ε → 3
2 is worth of attention, since for this factorization energy the ground

state level of H0 is erased from the spectrum of the new hamiltonian H1. Although the new
spectrum is equivalent to the old one through a finite displacement in the energy, the form of
the new potential is different from the initial one due to the singular term 1/x2 (see (18)).

3.3. Even transformation function
Now let us choose the even solution of (16) as transformation function; using once again (5) the
potential V1(x) turns out to be

V1(x) = V0(x) + 1−
{
ln

[
1F1

(
1− 2ε

4
;
1

2
;x2

)]}′′
.

This potential also has a singularity at x = 0, since V0(x) includes the infinite potential barrier.
Transformations with ε > 1

2 are not allowed, due to they generate additional singularities for
x > 0.

This time, the even solutions χn(x) of H0 are mapped into the eigenfunctions of H1:

φn(x) = Dnx e
−x2

2

{
4n 1F1

(
1− n;

3

2
;x2

)
+

(
1− 2ε

)
1F1(

5−2ε
4 ; 32 ;x

2)

1F1(
1−2ε
4 ; 12 ;x

2)
1F1

(
− n;

1

2
;x2

)}
,

with Dn = Bn√
2(En−ε)

being normalization constants. Some of them are plotted in figure 1(b)

along with the corresponding potential. As in the previous case, the function φε(x) ∝ 1/u(x)
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Figure 2. The potential V2 and its first four eigenfunctions obtained from: (a) two odd seed solutions with
factorization energies ε1 = 11

8
and ε2 = 5

4
, (b) two even seed solutions with factorization energies ε1 = − 2

8
and

ε2 = − 3
8
, (c) odd and even seed solutions with factorization energies ε1 = 5 and ε2 = 4.6, (d) even and odd seed

solutions with factorization energies ε1 = 0 and ε2 = − 1
2
.

does not obey the boundary condition at x = 0 and thus the associated factorization energy ε
does not belong to the spectrum of H1, which is composed by the levels En = 2n+ 1

2 , n = 0, 1, . . .

Once again, there is a notorious limit ε → 1
2 , since in this case the otherwise ground state

energy level E0 = 1
2 is erased from the spectrum of the new hamiltonian H1. Notice that in

this case the new potential and its spectrum become the same as the initial ones (up to a finite
displacement in the energy).

3.4. 2-SUSY
Let us suppose now that H0 is intertwined with a different Hamiltonian H2 as in (2), A+ and A
being identified with the second order ones of (7). From (8) we can see that the new potential
can be written as

V2 = V0 − η′ = V0 − [lnW (u1, u2)]
′′ .

In addition, the eigenfunctions ψn(x) of H0 typically transform into eigenfunctions φn(x) of H2

through the action of the intertwining operator A+ as in (9).
According to subsection 2.2, the transformation functions u1(x) and u2(x) must satisfy the

stationary Schrödinger equation. As it was done previously, we are going to choose u1(x) and
u2(x) as parity definite solutions for the ordering ε1 > ε2. Note that there exist four different
parity combinations leading to four different kinds of second-order transformations.
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3.5. Odd-odd transformation functions

Let us choose u1 = x e−
x2

2 1F1(
3−2ε1

4 ; 32 ;x
2) and u2 = x e−

x2

2 1F1(
3−2ε2

4 ; 32 ;x
2) to attain a new

potential with the singularity separated (e.g. [8]), i.e.,

V2(x) =
x2

2
+

3

x2
+ 2− [lnw(x)]′′ for x ≥ 0,

where w(x) turns out to be a continuous function without zeros in x ≥ 0 as long as the

factorization energies satisfy ε2 < ε1 ≤ 3
2 = E0 or Ej = 3+4j

2 ≤ ε2 < ε1 ≤ 3+4(j+1)
2 = Ej+1.

These are now precisely the conditions to produce a non-singular transformation in said domain.
The eigenfunctions φn(x) of H2 can be found from those of H0 in the standard way,

φn(x) ∝ A+ψn(x), and they satisfy the appropriate boundary conditions so that the eigenvalues
En in general belong to the spectrum of H2. In addition, φε1 and φε2 diverge at x = 0 and,
hence, neither ε1 nor ε2 belong to the spectrum of H2.

There are several limit cases through which we can delete either one or two levels of H0

for arriving to H2. For instance, the initial ground state energy E0 can be deleted by making
ε1 = E0, ε2 < E0. On the other hand, in the domain Ej ≤ ε2 < ε1 ≤ Ej+1 we can delete
either Ej or Ej+1, by taking ε2 = Ej with Ej < ε1 < Ej+1 in the first case or ε1 = Ej+1 and
Ej < ε2 < Ej+1 in the second. Moreover, the two consecutive levels Ej , Ej+1 can be deleted by
choosing ε2 = Ej and ε1 = Ej+1.

In figure 2(a) we can see an example of the new potential V2 and several of its eigenfunctions
φn(x) for ε2 < ε1 < 3/2.

3.6. Even-even transformation functions

Let us take now u1 = e−
x2

2 1F1(
1−2ε1

4 ; 12 ;x
2) and u2 = e−

x2

2 1F1(
1−2ε2

4 ; 12 ;x
2). We obtain that

V2(x) =
x2

2
+

1

x2
+ 2− [lnw(x)]′′ for x ≥ 0,

where w(x) is a continous function without zeros for x ≥ 0 as long as the factorization energies

satisfy ε2 < ε1 ≤ 1
2 = E0 or Ej = 1+4j

2 ≤ ε2 < ε1 ≤ 1+4(j+1)
2 = Ej+1, which are the conditions for

the transformation to be non-singular in its domain.
Note that the even solutions χn(x), that do not satisfy the boundary conditions, transform

now into the eigenfunctions φn(x) ∝ A+χn of H2, which do satisfy the boundary conditions and
thus, the corresponding eigenvalues En belong to the spectrum of H2. As in the previous case,
solutions φε1,2 associated to ε1,2 diverge at x = 0 and thus ε1,2 �∈ Sp(H2).

The limit cases for which one or two neighbour levels Ej disappear from Sp(H2) work similarly
as in the previous case. Thus, by taking ε1 = E0, ε2 < E0 it turns out that E0 �∈ Sp(H2). On the
other hand, if we make either ε2 = Ej with Ej < ε1 < Ej+1 or ε1 = Ej+1 with Ej < ε2 < Ej+1,
it turns out that either Ej �∈ Sp(H2) or Ej+1 �∈ Sp(H2) respectively. In addition, if ε2 = Ej and
ε1 = Ej+1 then both Ej , Ej+1 �∈ Sp(H2).

In figure 2(b) one can find some examples of the eigenfunctions φn(x) along with the
corresponding potential V2 for ε2 < ε1 <

1
2 .

3.7. Odd-even transformation functions

Let u1 = x e−
x2

2 1F1(
3−2ε1

4 ; 32 ;x
2) and u2 = e−

x2

2 1F1(
1−2ε2

4 ; 12 ;x
2) with ε2 < ε1. It turns out that

now the potential becomes

V2(x) =
x2

2
+ 2− [lnw(x)]′′ for x ≥ 0, (19)
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where w(x) is a continuous function without zeros for x ≥ 0 as long as the factorization energies
satisfy Ej = 1+4j

2 ≤ ε2 < ε1 ≤ 3+4j
2 = Ej , i.e., for these conditions the transformation is found

to be non-singular for x > 0.
Let us note that the eigenfunctions of H2 are found here by acting the intertwining operator

A+ onto the eigenfunctions ψn of H0, φn(x) ∝ A+ψn(x), since they satisfy the boundary
conditions so that their corresponding eigenvalues En belong to the spectrum of H2.

Now we need to know if either φε1 , φε2 or both in (15) satisfy the boundary conditions to
become also eigenfunctions of H2. For Ej < ε2 < ε1 < Ej it turns out that φε2 satisfies the
boundary conditions while φε1 does not. This implies that ε2 ∈ Sp(H2) and ε1 �∈ Sp(H2), i.e.,
through the second-order SUSY transformation it can be created a new level at the position ε2.
In addition, for ε1 = Ej with Ej < ε2 < Ej the same result is obtained, but now it implies that
ε1 = Ej �∈ Sp(H2) and ε2 ∈ Sp(H2). Thus, by employing the second-order SUSY transformation
we have deleted the level Ej and at the same time we have created a new one at ε2, so we have
effectively ‘moved down’ Ej to its new position ε2. For ε2 = Ej and Ej < ε1 < Ej neither φε1

nor φε2 satisfy the boundary conditions so that ε1,2 �∈ Sp(H2). Finally, for ε1 = Ej and ε2 = Ej
the same happens, i.e., we have deleted the level Ej in order to produce H2.

In figure 2(c) one can find an example of the potential V2 along with some of its eigenfunctions
φn(x) for E1 < ε2 < ε1 < E1.

3.8. Even-odd transformation functions

Finally, let us choose u1 = e−
x2

2 1F1(
1−2ε1

4 ; 12 ;x
2) and u2 = x e−

x2

2 1F1(
3−2ε2

4 ; 32 ;x
2) with ε2 < ε1.

As in the previous section, V2(x) takes the same form of (19), and the eigenfunctions φn of H2

are obtained from those of H0 through φn(x) ∝ A+ψn, which satisfy the boundary conditions
so that the eigenvalues En belong to the spectrum of H2. For this choice of u1(x) and u2(x) the
transformation is non-singular as long as the factorization energies satisfy ε2 < ε1 ≤ 1

2 = E0 or

Ej =
3+4j
2 ≤ ε2 < ε1 ≤ 5+4j

2 = Ej+1.
By studying once again if the φε1,2 of (15) satisfy the boundary conditions we arrive now to

the following results: for ε2 < ε1 < E0 or Ej < ε2 < ε1 < Ej+1 it turns out that φε1 satisfies
the boundary conditions while φε2 does not, meaning that ε1 ∈ Sp(H2) and ε2 �∈ Sp(H2), i.e., a
new level is created at ε1. For ε1 = E0 and ε2 < E0 it is obtained that ε1,2 �∈ Sp(H2), namely,
there is no additional level in Sp(H2). On the other hand, for ε2 = Ej and Ej < ε1 < Ej+1 once
again ε1 ∈ Sp(H2) and ε2 = Ej �∈ Sp(H2), i.e., through the second-order SUSY transformation
the level Ej has been ‘moved up’ to the position ε1. For ε1 = Ej+1 and Ej < ε2 < Ej+1 neither
φε1 nor φε2 satisfy the boundary conditions so that ε1,2 �∈ Sp(H2). Finally, for ε1 = Ej+1 and
ε2 = Ej the same happens, which implies that the level Ej is deleted.

Figure 2(d) shows a potential V2 and some of its eigenfunctions φn(x) for ε2 < ε1 <
1
2 .

4. Solutions to the Painlevé IV equation
In section 2 we saw that it is possible to find solutions g(x) to the PIV equation through

g(x) = −x− [lnφε1 ]
′,

where φε1 is an extremal state for a system having third order ladder operators l±. Since
Hamiltonians generated from the truncated harmonic oscillator through SUSY techniques can
have third order ladder operators, hence solutions to the PIV equation can be straightforwardly
obtained, as detailed ahead.

4.1. 1-SUSY
Recall that for a first order SUSY transformation there are three extremal states φ1, φ2 and
φ3 with eigenvalues ε1, ε2 and ε3 respectively which satisfy L+L−φi = 0, i = 1, 2, 3. Explicit
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expressions for such extremal states are well known, and we can label them firstly in the way:

φ1 ∝ 1

u(x)
, φ2 ∝ A+a+u(x), φ3 ∝ A+χ0,

where {ε1 = ε, ε2 = ε+1, ε3 =
1
2}. Moreover, the cyclic permutations of the indices of {ε1, ε2, ε3}

lead immediately to additional solutions of the PIV equation.
It is worth noticing that the solutions to PIV equation depend on our selection of the

transformation function u(x), for which there are two different choices (for a fixed ε).

For odd u(x) = x e−x2/2
1F1(

3−2ε
4 ; 32 ;x

2), the above extremal states and the cyclic
permutations of {ε1, ε2, ε3} lead to the following three solutions gi(x) = −x − [lnφi]

′ of the
PIV equation [24]

g1 =
1

x
− 2x+

(
1− 2

3
ε

)
x

1F1(
7−2ε
4 ; 52 ;x

2)

1F1(
3−2ε
4 ; 32 ;x

2)
,

g2 = −g1 − 2x− 2

[
x+ (2ε− x2)(g1 + x) + (g1 + x)3

x2 − 2ε− 1− (g1 + x)2

]
,

g3 = − g′1 + 2

g1 + 2x
=

g21 + 2xg1 + 2ε− 1

g1 + 2x
.

Note that g1 solves the PIV equation with parameters a1 = −ε+ 1
2 , b1 = −2

(
ε+ 1

2

)2
, while g2

and g3 do it for a2 = −ε− 5
2 , b2 = −2

(
ε− 1

2

)2
, and a3 = 2ε− 1, b3 = −2, respectively.

For even u(x) = e−x2/2
1F1(

1−2ε
4 ; 12 ;x

2) we obtain [24]

g1 = −2x+ (1− 2ε)x
1F1(

5−2ε
4 ; 32 ;x

2)

1F1(
1−2ε
4 ; 12 ;x

2)
,

while the expressions for g2 and g3 in terms of g1 remain the same as in the previous case.

4.2. 2-SUSY
Recall now that, for the second order SUSY partner Hamiltonians generated from the truncated
harmonic oscillator by using as transformation function u1 and u2 = a−u1 with ε2 = ε1 − 1,
there are three extremal states φ1, φ2 and φ3 with eigenvalues chosen as ε1 = ε1− 1, ε2 = ε1+1
and ε3 = 1

2 , respectively, which satisfy l+l−φi = 0, i = 1, 2, 3. Their explicit expressions are
given by:

φ1 ∝ u1
W [u1, u2]

, φ2 ∝ A+a+u1, φ3 ∝ A+χ0. (20)

Once again, we can choose any permutation of the indices of {ε1, ε2, ε3} in order to identify
φ1 with any of the three extremal states of the system departing from the choice in (20). Hence
we will obtain the following three different solutions of the PIV equation [24]:

g1 = −x− α+ 2

[
x+ α

x2 + 1− 2ε− α2

]
,

g2 = g1 +
2α2 − 2x2 + 2(2ε+ 1)

α− g1 − x
,

g3 =
(x+ α)g21 +

[
2ε− 1 + (x+ α)2

]
g1 + (2ε− 3)(x+ α)

(x+ α)2 + (x+ α)g1 + 2ε− 1
.

Here we should remember that α = u′
u .

Note that g1 solves the PIV equation with parameters a1 = −ε+ 5
2 , b1 = −2

(
ε+ 1

2

)2
, while

g2 and g3 do it for a2 = −ε− 7
2 , b2 = −2

(
ε− 3

2

)2
, and a3 = 2(ε− 1), b3 = −8, respectively.
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5. Conclusions
Supersymmetric partners of the truncated harmonic oscillator were obtained from the 1-SUSY
technique, both potentials being isospectral, while those obtained through 2-SUSY offered richer
possibilities for the spectral design. For the 2-SUSY case it is possible to erase one or two
consecutive levels in the energy spectrum. It is also possible to add a new level to the original
spectrum in almost any energy position.

We also have found the values for the factorization energies that produce non-singular first
and second order SUSY transformations in (0,∞).

The 1-SUSY transformations with u(x) even and 2-SUSY transformations with both u1(x)
and u2(x) even behave in a peculiar way, since they transform the eigenfunctions of the harmonic
oscillator which correspond to non-physical solutions of the original system into those which
are eigenfunctions of the new Hamiltonian while the eigenfunctions of the initial system are
transformed into solutions which do not meet the boundary condition at the origin.

A simple and direct procedure to obtain several explicit solutions to the Painlevé IV equation
was implemented using the extremal states for the SUSY partners of the truncated harmonic
oscillator.
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