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Abstract. We discuss some of the geometric properties of the state spaces in Quantum
Mechanics with emphasis in the two-level systems case. Then the dynamics of a two-level atom
affected by radiation fields is revisited in both the semiclassical and quantum approaches. In
the calculations we use Hubbard operators to reduce the matrix operations into simple relations
of subscripts. The time-evolution of the energy states of the atom is associated to trajectories
either on the 2-sphere or in the three-dimensional unit ball according to the classical or quantum
approach we are using.

1. Introduction

The geometry of state spaces is a subtle subject in quantum theories [1-6] that find applications
in diverse branches of contemporary physics as the dynamical control of quantum systems [7—15]
and quantum information [16], among others. Quantum states 1) cannot always be represented
by vectors |¢) in a Hilbert space H [1]; the most realistic approach uses density operators p
to represent the state of a quantum system & since this last is usually prepared in a statistical
ensemble of pure states {pg,1r} better than in a given pure state v, [17]. This situation
provides an indication of the geometry involved since the density operator is expressed as a
convex combination of orthogonal projectors 7 = |1) (k| that map the Hilbert space H into
a one-dimensional subspace Span{|¢)} each one. The projectors can be visualized as filters
characterized by certain absorption coefficients that are interpreted as the transition probabilities
between pure states and define the geometry of the state space [1]. In this context, the pure
states are represented by filters that perform the finest selection possible (minimal filters) and
correspond to the orthogonal projectors 7, so that the state space is the convex hull of all
the minimal filters m associated to a given physical system S. Using only vectors in a Hilbert
space is not enough to represent all the possible quantum states, indeed the involved geometric
structure is strongly limited in this case. It follows that “the physical reality can be too complex
in order to fit in any Hilbert space” [1].

The simplest space of quantum states is associated to any two-level system (qubit) like the
polarization of light or the spin-state of a silver atom, and this is just a three-dimensional ball
of unit radius. Such a convex body is large enough to carry the canonical transformations that
characterize the dynamics of the two-level system [1,16]. The points on the surface (i.e. the
points on the 2-sphere S2) are in a one-to-one correspondence with the pure states of any qubit.
A line segment ab connecting two arbitrary points a and b on S? is a convex set that represents
the space of states of some classical bit whenever a and b are antipodal. Any interior point of
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ab is a statistical ensemble of the pure states (extreme points) a and b. The entire state space
of a qubit (that is, the three-dimensional ball) is therefore the intersection of all the convex sets
ab that can be formed by taking arbitrary pairs a,b € S2.

Using a geometric approach the dynamics of the two-level pure states is reduced to rotations
and reflections of the 2-sphere [12]. This condition is useful to determine the (classical) magnetic
fields that must be applied on a spin-1/2 particle in order to control the time-evolution of its
quantum state [9-11]. For instance, the particle can be compelled to evolve cyclically [9,11] in
a process that is known as evolution loop [7]. It is also possible to visualize experimental setups
for the steering eigen-energy state to a destination without net adiabatic transitions [10]. The
qubit pure states are also useful in the constructing of mesoscopic kittens as the appropriate
linear combinations of j = 1/2 angular momentum eigenkets. The kittens manifest quantum
interference effects analogous to those occurring for linear combinations of coherent light waves
and are distinguishable by collecting them in kitten-hoods according to their invariance under
azimuthal rotations [14].

In this communication we analyze the geometry of the state space associated with a two-level
atom in external radiation fields. We shall address two different situations. A semiclassical
approach is first used by considering that the energy of the atom is quantized while the field
is treated as a classical entity. The state space of the entire system (atom+field) is just the
2-sphere since only qubit pure states are involved. The time-evolution of the qubit describes
trajectories on S? that are parameterized by the field variables and can be reduced to rotations
and reflections of the sphere as stated above. The population of the atom energy states is inverted
in time according to the initial conditions and describes a geodesic connecting the north and
south poles of S? (Rabi oscillations) if the atom and the field are in resonance. Non-resonant
cases give rise to evolution loops that are represented as circles on the sphere. In a second step
we use the quantum approach in which both the atom energies and the field are quantized. The
entire system is in a pure state that is represented by vectors in the Kronecker product of the
Hilbert spaces of the atom energy and field states. Here the population invertion of the atom
energy states depends on the photon statistical distribution of the field: the well known Rabi
oscillations are recovered for fields in a Fock state and the collapses and revivals phenomenon
for fields in a Glauber state. The geometry of the atom energy states is then analyzed after the
partial trace of the density operator p of the entire system over the field states po; = Trrp. At
the time ¢, the reduced density operator pg:(t) is a point of the three-dimensional ball, so that
the time-evolution of the atom energy states describes trajectories in the interior of the ball.

The organization of the paper is as follows. In Section 2 we present a short survey on
the geometry of quantum states by emphasizing the case of two-level systems (Section 2.1).
In Section 3 we analyze the interaction between the atom and the radiation field in the X-
representation. That is, we use the operators X%/ that cause a transition from the pure
state [1);) to the pure state |¢;) of either the atom or the field. These operators satisfy a
definite set of algebraic properties and are called after Hubbard (for a recent review see [18]
and references quoted therein). The X-representation reduces the matrix operations we are
going to deal with into simple relations of subscripts. The well known semiclassical result of the
Rabi oscillations describing the atomic transitions in time is recovered in Section 3.1. There,
the atomic population invertion is connected to circles on the 2-sphere described by the time-
evolution of the qubit pure states. The X-representation of the quantum treatment is given in
Section 3.2; the phenomenon of collapses and revivals of the atomic transitions is recovered by
assuming that the field is in a Glauber state. The analysis of pu(t) shows that the reduced state
of the atom is an ensemble of pure states that describes trajectories in the interior of the three
dimensional ball as it evolves in time (Section 4). We close the paper with some final remarks
and conclusions.
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2. A survey to the geometry of quantum states

In quantum theory the pure states 1) are represented by regular kets |¢) in a Hilbert space H.
These last are vectors of finite norm (||¢]|? = (p|p) < +00) that can be normalized to unity,
(p|le) = 1. On the other hand, one of the simplest devices of measuring in quantum mechanics
is a filter checking for a particle to be in a given (idler) state |p). The action of the device is
represented by the operator P, = |p)(p| producing the orthonormal projection of H onto the
one-dimensional subspace Span{|p)} C H. For an arbitrary (signal) state |¢) the action of P, is
given by P,|¢) =T'|p), with I = (¢[¢)) € C. Thus, the testing gives rise to one of the following
results (see e.g. [2,5]):

a) If the idler and signal kets are parallel () o |¢))) then the answer is affirmative.
b) If the kets are orthogonal (|¢)L|1))), the output of the checking is negative.

c) If |[v) = alp) + B|n) with |¢) L |n), the result is uncertain and depends on the coefficient
a =T. Here |a|> = |(p|y)|? is the transition probability connected to the possibility that
the system will pass the |p)-checking.

The one-dimensional space Span{|¢)} corresponds to a whole bunch of proportional regular kets
called a ray and denoted [p]. Hence, the kets representing pure states are not unique since two
normalized kets that differ only by a phase factor are elements of the same equivalence class

] = {lv) € H: [) = e?]g),e” € U(L)}, (1)

and lead to the same probabilistic predictions of the theory (i.e., |[¢]| = ||l¢||) [2,5,14]. In
general, whenever two normalized kets [i1) and |i)2) represent two possible pure states of a
system, their linear combination [1) = a|11) + aslis), with aq, as € C, represents a pure state
as well.

A quantum system, however, may not be in a pure state. In practice, the quantum state of
most of the physical systems is a mized state p rather than a given pure state |¢)) € H. The
state p is a statistical ensemble! {py, s rez, T C Z*, where each pure state [i;,) occurs with
probability 0 < pr, < 1 and {|¢k) }rez is an orthonormal set. As a mathematical object, p is not
a vector in the Hilbert space H but a linear operator p : H — H that satisfies

i) p=p! (Hermiticity)
ii) (¢|ply) > 0 for all |¢p) € H (positive definiteness)
iii) Trp = 1 (normalizability)

Thereby, the probabilities p, and the pure states |1;) are respectively the eigenvalues and
eigenvectors of p which, in canonical form, is written as

p=> prltr)(wnl, TCZ". (2)

kel

Assuming that we know how to prepare the pure states |¢y), we can use a classical random
number generator to produce the number k with probability pi. Every time we get a number &
from the generator a copy of the system is prepared in the state [1x). The ensemble (2) is then
obtained by repeating at will such a procedure [19]. In this case p represents the probability

! We assume discrete basis for the systems we are interested in, the transition to the continuous case is
straightforward.



8th International Symposium on Quantum Theory and Symmetries (QTSS8) IOP Publishing
Journal of Physics: Conference Series 512 (2014) 012021 doi:10.1088/1742-6596/512/1/012021

of being prepared in the state |1/3) as well as the probability of being found in that state?. A
mixed state p represents also an imprecise knowledge or inaccuracy in the preparation process
of the pure states [19] (see also [20]).

Properties (ii) and (iii) give rise to the conditions

dpe=1, 0<p<1. (3)
kel

If pp, = 1 for a given k € Z then (2) is reduced to the orthogonal projector py := %) (x| that
fulfills (i-iii) and besides is such that Trp? = 1. In this case pj as well as |¢;) represent the
same pure state 1. Therefore, we realize that (2)—(3) correspond to a convexr combination of
the pure states pi, that is,

p=> ok, P k=1 0<p <1 (4)
kel kel

In the case of a nontrivial convex combination (i.e., 0 < py < 1 for at least two different values
of k € T) one immediately shows that Trp? < 1. Then, for any quantum state we have

Trp? <1, (5)

where the equality holds only for pure states. Considering all the possible combinations (4) we
see that the collection of all the density operators p associated to the ensemble {pg, ¥ }rez is
just a convex set with the pure states pj as extreme points® [1,3,6,16].

2.1. The geometry of two-level systems

Let us consider an atom with just two levels of energy. The excited |+) and ground |—) states
are orthogonal
(+[+) = (-[-) =1, (+]=) = (=) =0, (6)

and will be written in their simplest representation

|+>=<(1)), |—>=<(1))- (7)

An arbitrary (pure) energy state of the atom |¢) is then written as a normalized linear
combination in the Hilbert space H, = Span{|+),|—)}, that is

[Y) = c1|+) + c2|—), ]01]24—\02\2:1, c1,c0 € C. (])

The 2-tuples (7) are associated to the spectral decomposition and matrix representation of the
Pauli operator o3 as follows

o3 = |+)(+] = |-)(~| = ( - ) )

2 In a more general situation, an arbitrary set of pure states {¢x }rezs need not be orthogonal in order to define
a statistical ensemble p’ = {p},, dx frez/- If the kets |px) are not orthogonal then the probabilities pj, of ‘being
prepared in’ and pi of ‘being found in’ the state |¢r) are not equal since, according to the point (c) indicated
above, a system prepared in the state |¢x) with k # £ can be found (with nonzero probability) also in the state
|¢p¢). Moreover, if the set {¢x}rez/ is not orthogonal, the probabilities pj, are not the eigenvalues of p’ [19].

3 The points of a convex set that cannot be expressed as a convex combination of other points in the set are

called extreme points.
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This last together with the creation and annihilation spin-1/2 operators

rm(24) = (20), w

are the generators of the su(2) Lie algebra®
[03,04] =204, [o4,0-] =03, (11)
and satisfy the following relations
02 =02 =0, ol =0, oilt)=0, oilF)=|£). (12)
In this representation the observable of the energy is the Hamiltonian

1
Ha = §hbda0'3, <13)
with w, the atomic transition frequency. Another observable of interest is the density operator
p which in the representation (9) acquires the general form

P11 P12 1 S o - =
p= :*(]I—FT'O')? 7_:(7'1;7'277_3)a 02(01,0'2,0'3)- <14)
P21 P22

Indeed, this operator is (i) Hermitian if pi1,p22 € R and p12 = py; (ii) definite positive if
|p12| = |p21] < \/p11p22, and (iii) normalized if p11 4 p22 = 1. Considering these three properties
one can verify that the elements of the Bloch vector T satisfy the equation of a three-dimensional
ball of unit radius BJ[0, 1],

Tepl =1+ +75 <1, (15)

and are given by

T1 = p12 + p21 = 2Re(p12), 7T =i(p12 — p21) = 2Im(p12), 73 = p11 — p22. (16)

It is illustrative to notice that the Bloch vector 7 is also associated to the expectation value of
& calculated in the basis of pure states |+); namely 7, = (ox) = Tr(poy) for k = 1,2,3. Thus,
n = (7) = Tr(pd) is a point on the 2-sphere S? C B[0,1] since 7 = n in Eq. (15) is in this case
such that ||n|| = 1. This representation of the energy pure states of the two-level atom leads
to a fibre-bundle formulation of the qubit dynamics. The Hopf fibring [21] (see also [22]) of the
3-sphere S3 over the base space S? with fibre S! yields the geometry of qubit pure states

st — 53 T 52,

Equations (16) correspond to the Hopf mapping m, the 3-sphere is the space of rays (1) belonging
to the 2-dimensional Hilbert space H, = Span{|+),|—)}, and the fibre S defines the rays in
terms of the phases e € U(1). All the points on S? represent energy pure states of the atom,
any inner point of B[0,1], on the other hand, represents a mixed state of |+).

4 Tn terms of the Pauli matrices o3, 01 = 04 +0—, and 02 = i(0— —04), the su(2) algebra reads [0;, 0] = 2¢x0%,
where 4,7,k = 1,2,3 and €;;;, is the total anti-symmetric Levi-Civita tensor.
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3. Atom-Field interaction

In this section we are interested in the interaction between a two-level atom and a radiation field.
To simplify the calculations we shall use the X-representation of operators that is obtained by
considering the Hubbard operators in their simplest form [18]. That is, we shall use n-square
matrices X%/ which have entry 1 in position (i, j) and zero in all other entries at the time that
they fulfill the multiplication rule

Xi,ij,m — iji,m7 (17)
and have the properties

(Xz,] T — X 1 ZXk Kk I, Xi’j, Xk’m]j: — 5iji,m + 6miXk’j’ (18)

with T the identity matrix and [A, B]+ standing for either the commutator (—) or the
anticommutator (+) of A and B.

In X-representation any operator A acting on H, = Span{|+),|—)} is expressed as a linear
combination

A= Z ap; X, ay; €C, (19)
k,j=1

where the coeflicients ay, ; are defined accordingly. For instance, the su(2) generators (9) and
(10) read as
o3 =XM - X225, =X o_=X>, (20)

while the Hamiltonian (13) and the identity I» are written in the form
1
Ha — 573,&)@()(1’1 _ X2’2), ]12 — Xl’l + X2’2. (21)

3.1. Classical fields

As a first approach let us consider the situation in which the (electric) radiation field can be
described in a purely classical manner. Considering the case of single mode we have

Et) =& (7™t 4 ert) e, (22)

Here £, wy and ey are respectively the amplitude, the frequency and the polarization of the
field. The most general form of the interaction Hamiltonian Hj. is in this case given by

2
Hiy = Z A X (23)
k=1

The coefficients \; ; of this last combination are characterized by the field parameters [23,24].
Using the dipole approximation one immediately gets Ai1 = A2 = 0 and Ao = A1 =
2hy cos(wyt), where v = (RE€)ey - e, stands for the classical Rabi frequency and p, ey, are
respectively the “size” and orientation of the atom dipole momentum p that defines the
approximation. From (20) the interaction Hamiltonian (23) acquires the usual form

Hia = h(os + o). (24)

Now we use the Hamiltonian (13) to introduce a rotating frame description by means of the
unitary transformation

W) g = eHat/M|y). (25)



8th International Symposium on Quantum Theory and Symmetries (QTSS8) IOP Publishing
Journal of Physics: Conference Series 512 (2014) 012021 doi:10.1088/1742-6596/512/1/012021

Then H, is invariant under such a transformation while Hy. is mapped into the expression
Hie = Hie + 20y (017" sim, (26)

with Agm = (A + A?)/2. In the rotating wave approximation we can omit the second term
in the last expression so that H;y = Hjy. Finally, let us take %wf and hw, respectively as
the zero and unit of energy to write the Hamiltonian of the entire system (atom+field) in the
conventional form (see e.g. [23-26]):
A w y
Ha=Ho+ Hia = Jos+glos +o),  A=1-"1 g=—". (27)
Wa Wq
The (dimensionless) parameter A stands for the detuning between the radiation field and the
atomic transition. The time-evolution operator Uy (t) = e!fc!* is easily achieved

Ua(t) = cr (XM + ()X +2 (¢ ()X, (28)
where z* is the complex conjugate of z € C and
(t) Qt— i 2 s (t) = i sin Ot (29)
— — 7—— S1n _ = 17— S1n
Cy cos vk , c g8 ,

with Q = /A?/4 + g2 a generalized Rabi frequency (this is reduced to the usual Rabi frequency
when A = 0). To get some insights on the time-evolution of the system let us assume that the
atom is initially in the pure state [¢)(0))g = |+). One gets

(@) r =U®)[¥(0)r = ct(t)|+) + c-()]-), (30)
so that the atomic population is inverted according to the rule

(o3(0) = e+ O ~ [e-OF = ()" cost2nt) + (fﬂ) (31)

At resonance (A = 0) the well known Rabi oscillations between |+) and |—) are recovered

(03(1)) = cos(2gt). (32)

Figure 1 shows the behavior of (31) for different values of the detuning. If A = 0 the atomic
population is inverted from |+) to |—) and vice versa at the (dimensionless) Rabi frequency
g = 7/wa. Out of resonance (A # 0) the initial atomic population |c. (t)|? periodically decreases
its value and recovers this at the generalized Rabi frequency 2. In this case |cy(¢)|? is never
zero so that the atom is not able to arrive at the state |—) in any time. Indeed this evolves from
|+) to a linear superposition of |[4+) and |—), and after a while determined by € the atom goes
back to the state |[+) (see the cases A = g and A = 4¢ in Figure 1).

The pure state (30) can be represented also by a projector with the properties i)-iii) of a
density operator we have discussed in the previous section, this reads as

p(t) = [WO) ()] = lesPX D + e [PX>? + 2 (cre-X1?)

where the time-dependence of the coefficients has been assumed as implicit. The Bloch vector
associated to the state (33) is normalized (7 = n) and evolves in time by describing a trajectory
on the 2-sphere S? that is parameterized as follows

(33)

sim ’

ni(t) = 2Re(cyc_) = —‘?TAQ sin?(Qt), no(t) = 2Im(cyc ) = —% sin(29Qt),
(34)

n3(t) = leg|* = e_|? = <%)2cos(2§2t) + (2%)2
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Figure 1. The atomic population invertion obtained in the semiclassical approach (31). If the
atomic transitions are in resonance with the field (black curve) one recovers the well known Rabi
oscillations between |+) and |—). For other values of the detuning (A = g in red, A = 4g in
blue) an atom in the initial state |+) has not the possibility to evolve into |—) with certainty.

Figure 2. In the semiclassical approach the state space of an atom in a single mode radiation
field is just a 2-sphere because only the pure states of the atom are involved. At resonance,
the qubit describes a geodesic on the yz-plane (left) while other values of the detuning give
rise to circles on the sphere that have the north pole as common point. The paths for A = g
(red) and A = 4g (blue) have been depicted here (right) for comparison with Figure 1. In all
cases the north pole is the initial state and the system comes back to this point in a period
T, =nn/Q,n € Z.

In general, the Bloch vector n describes circles on S? that pass over the north pole (V)
periodically in time; the greater the value of A the smaller the diameter of the circle (see
Figure 2). The points P integrating these circles are connected to N by a chord NP that
fulfills 0 < NP < 2, with 2 the diameter of the 2-sphere. Such paths are also the geometric
representation of the atomic population invertion (31) as this evolves in time. At resonance
A = 0, the circle corresponds to a geodesic passing over the south pole (S) in the yz-plane.
In the vicinity of resonance the circles are defined over a plane which is almost parallel to the
yz-one and pass over points that are close to the south pole. Thus, the atom evolves from |+) to
a linear superposition (30) that is dominated by |—) at a half a period T'/2 = 55 ~ 1g for A= 0.
Other values of A produce different linear superpositions at 7'/2. For instance, in Figure 2 we
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see that the chord NP defined by the points P belonging to the circle for A = 2g is smaller
than the chord obtained for A = g/2. This means that the influence of |[+) in the superposition
(30) increases as the value of A. For arbitrary initial states written as the linear superposition
of the north and south poles the trajectories are the same as those described above. This is just
necessary to consider that any point on the sphere can be transformed into IV, and vice versa,
by the appropriate set of rigid rotations.

3.2. quantized fields

If the description of the radiation field requires the inclusion of quantum properties then the
electric vector (22) is substituted by the vectorial operator

E(t)=¢& (ae*’wft + &Teiwf) e/, (35)
where @ and a' are the boson annihilation and creation operators fulfilling the photon algebra
[a,a"] =1y, [N,a]=-a, [N,al]=al, (36)

with N = afa the number operator and I; the identity operator in the Hilbert space
My = Span{|n)},cz+. The action of the above operators on the Fock vectors |n), n € Z7,
is as follows

aln) = vnln —1), a'ln) =vVn+1jn+1), Nln) = nn). (37)

For simplicity we shall omit the “hat” in the representing of operators (121 + A) while we use
the number 1 instead of Iy whenever there will be no confusion in notation. The Hamiltonian
of the field is in the Fock’s representation given by

Hy = hwy <N + ;) , (38)

so that Hy|n) = hws(n+ 3)[n). Thus, H; is the state space spanned by the energy eigenvectors
of the field. The entire quantum system & = S, + S is a composite of the atom S, and the field
Sy, so that the energy observables (21) and (38) should be promoted to act on the state space
of §S. We have

Ha—>Ha®Hf, Hf—)HQ(X)Hf, (39)

with ® the Kronecker product of operators [18]. Then H, and Hy are the energy observables of
the atom alone and the field alone. Accordingly, the free of interaction Hamiltonian reads as

Moa A+ hwy(N +1) 0
HQZHQ(X)]IJC—FH@@HJC: . Bow A 4 B N . (40)
- f

Notice that the matrix elements of Hy are in the Fock’s representation. The eigenvectors and
eigenvalues of this operator are defined as follows

Hol+,n) = B [wr(n +1) + G-A] [+,7n), )
41
Hol=,n+1) =hlwp(n+1) = GA] |-,n+1),

where

|+,n) = |+)® |n) = ( ||g; ) - n+1)=|-)®@n+1)= ( |n‘?>1> ) (42)
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with |@) the null vector in H. If the interaction between the atom and the field is considered
then, in a first approximation, we can write

2 400

Hr= > AigweX™ @ X3, (43)
ij=1 k(=0

where X% is an infinite square matrix that has entry 1 in position (k, ) and zero in all other
entries [18]. This last kind of matrices is useful in the constructing of the X-representation of
the boson operators [23, 24]:

+oo oo
a=VNY Xp" el = VN> XPHe (44)
n=0 n=0

Using the same approximations as in Section 3.1 one arrives at the simplest form of the
interaction Hamiltonian

0 ~va
H1:7(0+®a+a®aT):< ; ) (45)
ya' 0

Therefore, the Hamiltonian of the entire system in the rotating frame is just the one appearing
in the Jaynes-Cummings model [27] (see also [28]):

A
H:50'3®Hf+H[, (46)

where hwy/2 and hw, are respectively the zero and the unit of the energy. The time-evolution
operator is in this case [18,23,24]:

(47)

stm

U(t) = et = C (N +1,6) X5 + CL(N, ) X224 2 (Ci(N, t)Xl’z)

where the operators CL(N,t) are defined in the Fock’s representation

C4(N,t) = cos (nt) — ;QA

sin (Qnt), C_(N,t)=al (
N

) sin (Qnsat),  (48)
N+1

with Qn = y/A2/4 + gN. Thus, they act on the number states |n) as follows
CL(N,t)n) = cy(n,t)|n),  C_(N,t)|n) = c_(n,t)n+1). (49)

The c4(n,t) functions are given by

A
c+(n,t) = cos (Qut) — 2 sin (Qt), c_(n,t)=vn+1 (ng

20, -~ > sin (Qn4at) . (50)

Let us assume that [10(0))r = |+, n) is the initial sate of the entire system. The time-evolved
state is then of the form

() r =U@)[¢(0))r = cy(n+ 1, 1)+, n) +c(n,t)[—,n+1), (51)

and the atomic population invertion as a function of time is

(o)) = <9é’f>2cos(29n+lt) + < miH)Q' (52)
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Figure 3. The atomic population invertion obtained in the quantum approach for the field in
the Fock state |n) (Eq. (52), left) and in the Glauber state with m = 15 (Eq. (56), right) for
different values of the detuning (A = 0 in black, A = ¢ in red and A = 4g in blue).

In Figure 3 we can see the dependence of the population invertion (52) on the detuning A.
At resonance (A = 0) the atomic population oscillates in time from |+) to |—) while the field
transits from the Fock state |n) to [n+1) at the frequency €2, (notice this occurs even for the zero
photons n = 0 case, as expected). The situation illustrated in Figure 3 is quite similar to that
presented in Figure 1 (except in the zero photons case) because in both cases we have analyzed
the time-evolution of the pure states of the atom+field system. In the quantum approach this
is given by the Kronecker product state |+,n) while in the classical approach we have the
simple pure state |[+). In the next section we shall discuss on the main differences between the
semiclassical and the quantum approaches when one looks for the dynamics of the atom states
alone.
If the field is not in a definite state of the energy one can consider the initial state

o o
0(0)) = " onl+, k), with Y[l =1. (53)
k=0 k=0
The atomic population invertion is in this case
o0
(o3) = > |l (o). (54)
k=0

For instance, if (53) is a Glauber state then
e "k

o n=lah acC, (55)

o |* =

with 7 standing for the mean photon number. At resonance the atomic population invertion
(54) yields

> n ok
(o3) = e " Z ¢ k‘n cos(2gt). (56)
k=0 ’

The Figure 3 shows the behavior of the atomic population invertion in the cases (52) and (56) for
different values of the involved parameters. There, we can appreciate that the time evolution of
the atom energy states depends on the statistical distribution of the photons that integrate the
radiation bath. The collapses and revivals phenomenon is a direct consequence of the classical
properties associated to the Glauber quantum states.
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Figure 4. If the atom is initially in the energy state |+) and the field in the Fock state |n)
then the entire system (atom-field) is in the pure state (51) and describes the time-evolution
presented in Figure 3. If one focuses on the atomic part only, then the reduced state p. in (57)
describes the segment lines illustrated at the left for A = 0 and at the right for A = 2gv/n + 1
and n = 2. Notice that in this last case the total chaos (0,0,0) is a part of the involved segment
line.

4. Mixed states

The pure state (51) can be represented also by the projector p(t) = [¢(t)) r(1(¢)|, which is the
density operator associated to the entire system and fulfills Trp?(t) = 1. We are interested in
the description of the atom alone, so that we use the partial trace over the field states to get

palt) = Trp(t) = [ex(n + 1,8 2X 11 + [e_(n, £)2X22. (57)

This last operator is such that Trp2(t) < 1. Therefore (57) is the mixed state associated to
the ensemble of pure states X1 «+ [+) and X?? <+ |-), with probabilities |cy (n + 1,%)|? and
lc_(n,t)|? respectively. Moreover, p,(t) defines a convex set which is just the chord connecting
the north and the south poles of the three-dimensional unit ball (see Figure 4). This assertion
is verified by calculating the Bloch vector 7, one finds that only the third component is different

from zero,
2 2
v 1 A
Ty = <gn+> cos(2Q,411) + < ) . (58)
Qi1 20,41

The parametrization(58) describes a segment of line on the z-axis which is contained in the
chord NS connecting any of the circles passing over the north and the south poles of B[0,1]. At
resonance the segment of line is just N'S. The point of “total chaos” (0,0, 0) is reached whenever

A2

W ppi1t) = — s
cos(2€,411) 1P +1)

(59)

is fulfilled, so that A < 2gy/n + 1 (in Figure 4 we show the case when the identity of this last
expression is fulfilled with n = 2).
For arbitrary states of the field energy (53) the atom state is off-diagonal

2
pa =Y pi X", (60)
ij=1
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Figure 5. If the atom is in the initial state |[+) and the field is in a Glauber state (55) the atomic
reduced state p. describes trajectories in the interior of the three-dimensional ball (left). The
plot is at resonance with m = 15. The time-evolution depicted here is in the interval [0,9.97],
in © units. At the right we show the partial intervals (b) [0,47] (a) [2.67, 57] and (c) [67,9.97],
in all cases a red disk means pure state, a blue circle is for initial state and a blue disk denotes
final state. All the path is described on the disk defined by the intersection of the yz-plane and
the ball BJ0, 1].

with coefficients (the time dependence is implicit)

“+oo +oo +0o0
pri= logcr(k+D pr2=ph=Y arprofep(k+2) (k). pr =Y loge (k)2 (61)
k=0 k=0 k=0

Using (16) we can evaluate the trajectories described by the Bloch vector in the three-dimensional
unit ball. The Figure 5 shows the situation obtained when the atom is initially in the pure state
|[+) and the field is in a (pure) Glauber state defined by @ = 15. There, we can see that the
atom state departures from the north pole of the ball (pure state |+)) at ¢ = 0 and goes inside
that convex body for arbitrary values of ¢t # 0. In the picture we have assumed that the atomic
transitions and the field are in resonance so that all the path is depicted in the disk defined by
the intersection of the yz-plane and the ball B[0,1]. Other values of the detuning A # 0 give
rise to paths that are more elaborated in the interior of the ball. Similar results can be found
in [28].

5. Conclusions

We have studied the interaction of a single qubit with a single mode radiation field both
in the semiclassical and quantum approaches. The geometry of the related state space has
been discussed and the time-evolution of the energy states of the atom are found to describe
trajectories in the three-dimensional ball of unit radius. In the semiclassical treatment only the
pure states |£) of the atomic energy are involved so the geometric representation is on the points
of the 2-sphere. At resonance with the radiation bath the energy state of the atom describes a
geodesic on the yz-plane that passes over the north and the south poles. For other values of the
detuning A, the paths followed by the energy state are circles over the sphere that has the north
pole as common point. In the quantum case we have shown that the entire system (atom-field)
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is in a pure state that evolves in time depending on the statistical photon distribution of the
radiation bath. If the field is in a Fock state |n) and the atom in an energy state |[+) then the
state of the entire system oscillates according to the Rabi frequency and depicts closed paths
on the 2-sphere. The field in Glauber states leads to the collapses and revivals of the atomic
population invertion that are well known in the literature. The reduced state of the atom, on
the other hand, is just a mixed state and describes trajectories in the interior of the ball. In
summary, we have analyzed here the geometry of the space state associated to a single qubit.
The analysis of the case when the atom is in a mixed state as initial condition is going to be
published elsewhere.
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