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Abstract. It is shown that the identification of the double groups required for treating 

molecular problems involving an odd number of electrons can be solved using 

abstract group theory without consideration of explicit matrices as in Pauli’s 

discussion using spin matrices.  This presupposes that the character tables are arrays 

of invariant numbers which alone are sufficient to specify the relevant properties of 

the spin systems.  Consideration of subduction from infinite groups such as SU(2) is 

thus avoided and the criteria used to identify abstract groups as suitable double 

groups for the odd-electron spin problem include the need for subduction from finite 

symmetry groups of higher order as well as the requirement to produce closed shells 

of electrons in which no two electrons can have the same quantum numbers.  Explicit 

calculations are provided for groups of orders 1, 2 and 4 and these provide the 

underlying principles for any molecular symmetry group.  Novel aspects include the 

consideration of the separable four-fold degeneracies which occur in molecules 

having a single four-fold axis of symmetry.  It is also shown that the treatment 

required for threefold symmetries is consistent with the principles derived from the 

study by abstract group theory of 1-, 2- and 4-fold symmetries. 

1. Introduction 

Abstract groups are described by presentations.  These provide information about the order of 

the generators of the group and the relationships between them.  A character table and an 

automorphism group can be defined for each abstract group.  The following are some simple 

examples of presentations:- 

1. The cyclic groups of order n.  These can be expressed in terms of a single generator, A, 

such that An = E where E is the unit element of the group.  A is said to be of order n where 

n is the smallest power of A which generates E. 

2. The direct product group of order mn.   Such a group can be expressed in terms of 2 

generators, A and B, such that Am = E and Bn = E.  The elements A and B have to 

commute, i.e. BA=AB.  In some notations this would be written [A,B] = E. 

3. The dihedral group of order 2n.  This may be presented as {An = E; B2 = E; BA = A–1B} so 

that the commutator [A,B] = A−1B−1AB = An −2. 

 

The above examples are the simplest possible and it should be recorded that in more 

complicated groups such as the icosahedral rotation group the choice of generators to produce 

elements labelled by words which contain the powers of the generators in alphabetical order 

should not be regarded as completely free if one also aspires to mechanise the process of 

identifying the product of any two elements by use of the relationships given between the 

generators.  In some cases analysis of the product will unfortunately lead to an infinite 

sequence of generators. 
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2. Some aspects of character tables 

2.1 The non-uniqueness of character tables 

Every abstract group has a character table which is a number-theoretical array.  Not all 

character tables are different, however, but it will be demonstrated that the irreducible 

representations of two different groups which have identical arrays of numbers as their 

character tables may well differ in some of their derived properties. 

To illustrate this point we may study the simplest case which happens to occur with groups 

of order 8.  The dihedral group D4 := {A4=B2=E; BA=A3B} and the quaternion group Q := 

{A4=B4=E; B2=A2; BA=A3B} have the same character table:- 

 

D4 E A2 A, A3 B, A2B AB, A3B 

Q E A2 A, A3 B, A2B AB, A3B 

Г1 1 1 1 1 1 

Г2 1 1 1 −1 −1 

Г3 1 1 −1 1 −1 

Г4 1 1 −1 −1 1 

Г5 2 −2 0 0 0 

 
The conjugacy-class structures are identical but the order structures are not.  Apart from 

the identity, D4 has five elements of order 2 and two of order 4 while Q has one element of 

order 2 and six of order 4.  The differences produced in the squares of the elements, εi , are 

reflected in the calculation of the symmetric and antisymmetric squares of the 2-dimensional 

irreducible representation, Г5 , of each group.  The character of the symmetric square for a 

representation, Г, and an element, εi , is defined as [Г2] = ½[{χ(εi)}2 + χ(εi
2)] while for the 

antisymmetric square, {Г2}, it is defined as ½[{χ(εi)}2 − χ(εi
2)].  The sum of these two 

components is the square Г2 and both the symmetric and antisymmetric parts are reducible 

representations of the group. 

When we calculate the symmetric and antisymmetric squares of the 2-dimensional 

irreducible representation, Г5 ,  of each group we obtain the following results:- 

 
Group D4 

εi E A2 A, A3 B, A2B AB, A3B  

εi
2 E E A2 E E  

Г5 2 −2 0 0 0  

[Г5
2] 3 3 −1 1 1 = Г1+Г3+Г4 

{Г5
2} 1 1 1 −1 −1 = Г2 

 

Group Q 
εi E A2 A, A3 B, A2B AB, A3B  

εi
2 E E A2 A2 A2  

Г5 2 −2 0 0 0  

[Г5
2] 3 3 −1 −1 −1 = Г2+Г3+Г4 

{Г5
2} 1 1 1 1 1 = Г1 

 
It is to be noticed that the totally-symmetric representation, Г1 , occurs in the symmetric 

square of Г5 of D4 but in the antisymmetric square of Г5 of Q. 

 

2.2 Single- and double-valued representations 

When, as in these two cases, a group possesses an invariant subgroup of index 2 (i.e. a 

halving subgroup) the concept of single and double value can be defined.  In such cases the 

single-valued representations have the same character for the commuting twofold element as 

for the identity while the double-valued representations have minus the character for the 

identity as the character for the commuting twofold element.  This leads to the statement that 
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the products of two single-valued representations or two double-valued representations are 

single-valued while the product of a single-valued representation with a double-valued 

representation is double-valued. 

In the above two examples, all characters of Г5 happened to be real numbers.  According 

to the definition above, the irreducible representations Г5 of both D4 and Q can both be 

regarded as double-valued.  The fundamental difference, however, is that Г5 of D4 is such that 

the totally-symmetric representation, Г1 , occurs in the symmetric part of its square while in 

the case of Г5 of Q, Г1 occurs in the antisymmetric part of its square. 

 

2.3 Complex representations 

Another type of representation is characterised by having some characters which are complex 

numbers.  For this type the above formulæ for the square and its parts cannot be used without 

further information.  This can be illustrated with reference to the tetrahedral rotation group, T, 

which is isomorphic to the alternating group, A4 .  T may be presented in terms of three 

generators, A, B and C, such that {A2=B2=C3=E; BA=AB; CA=ABC; CB=AC}.  The 

character table is:- 

 

T E A, B, AB C, AC, BC, ABC C2, BC2, ABC2, AC2 

Г1 1 1 1 1 

Г2 1 1 ω ω2 

Г2
* 1 1 ω2 ω 

Г3 3 −1 0 0 

 
where ω and ω2 are the complex cube roots of unity.  If one simply squares the characters of 

either of the complex representations the other is obtained and this will not lead to a useful 

implementation in quantum mechanics.  However, if one takes the real, reducible, 

representation Г2+Г2* and applies the formulæ above the direct product will be 2Г1+Г2+Г2* 

with the totally-symmetric representation, Г1 , occurring in both the symmetric, Г1+Г2+Г2* , 

and the antisymmetric, Г1 , parts.  That Г1 should appear twice is logical since Г2+Г2* consists 

of two representations.  Г2 and Г2* are normally described as a complex-conjugate pair of 

representations because, for each element their characters are related by complex conjugation.  

In another terminology the reducible representation Г2+ Г2* would be said to be a separably-

degenerate representation. 

A more abstract description derives from the group-theoretical concept of the inverse 

automorphism rather than the algebraic concept of complex conjugation.  This automorphism 

has the effect of replacing each element by its inverse.  In this example the class {C, AC, BC, 

ABC} will be interchanged with the class {C2, BC2, ABC2, AC2} and the characters are 

replaced by their complex conjugates.  The invariance of the character table to this 

automorphism is assured by permuting Г2 and Г2* at the same time as interchanging the two 

classes of threefold elements. 

Another example of a group with complex representations is the cyclic group of four 

elements, C4 .  The presentation is {A4=E} and the character table may be written as follows:- 

 

C4 E A2 A A3 

Г1 1 1 1 1 

Г2 1 1 −1 −1 

Г3 1 −1 i −i 

Г3* 1 −1 −i i 

 

Unlike T this group has an invariant subgroup of order 2, {E, A2}, and the characters for the 

twofold element, A2, are  those for the identity.  Г1 and Г2 could therefore be regarded as 

single-valued representations and Г3 and Г3* as double-valued representations. It should be 

stressed, however, that this is not a necessary distinction: in applications where double-valued 

representations are not needed as such, all four representations of C4 can be used as ordinary 
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representations.  The above character table of C4 illustrates one further point which is true for 

groups where the terms single-valued and double-valued are applicable.  The weight of any 

double-valued representations, defined as the sum of the squares of their dimensions, has to 

equal the weight of the single-valued representations.  In the case of C4 the weights of both 

single- and double-valued representations are 12+12=2.  In the case of T, however, the weight 

of the Г2 and Г2* representations is 12+12=2 while that of the Г1 and Г3 representations is 

12+32=10.  In such a case the criterion of having an invariant subgroup of order two is not 

satisfied and so the abstract group T could not be used in a context where double-valued 

representations are required. 

 

3. The problem of electron spin 

In order to explain the Stern−Gerlach effect and the anomalous Zeeman effect it was 

necessary to introduce the concept of spin.  Unlike electronic orbital functions, the one-

electron spin-functions transform as double-valued representations of a so-called “double 

group” which has double the order of the group used to describe the orbital functions.  Unlike 

orbital functions, however, the spin functions of degeneracy 2n have to be such that the fully-

antisymmetrised 2n-th power of the representation they span contains the totally-symmetric 

representation[1].  The problem is to identify what abstract groups could satisfy these 

requirements and hence provide information from their structure about the transformation 

properties of spins and spin-orbitals.  Rather than assume that the special unitary group of all 

22 matrices is involved and then reduce the symmetry to the often finite symmetry involved 

in molecules, the approach taken here is the converse, viz. to go from low-order groups to 

groups of higher symmetry without any mention of matrices. 

 

4. Construction of double groups of abstract groups suitable for electron-spin problems 

The principles will be illustrated by constructing the double groups of the two abstract groups 

of orders 1, 2 and 4.  These must be groups of orders 2, 4 and 8 respectively.  There are just 

five distinct abstract groups of order 8 which can be enumerated as:- 

 

Order Group Presentation 

2 C2 {A2=E} 

4 
C4 {A4=E} 

C2C2 {A2=B2=E; BA=AB} 

8 

C8 {A8=E} 

C4C2 {A4=B2=E; BA=AB} 

D4 {A4=B2=E; BA=A3B} 

Q {A4=B4=E; B2=A2; BA=A3B} 

C2C2C2 {A2=B2=C2=E; BA=AB; CA=AC; CB=BC} 

 

The presentations are each given in terms of a minimum number of generators: this is 

noteworthy for the quaternion group where a more symmetric set is obtained using a third 

generator.  The reason for using minimal sets is that a double group will then contain no more 

than one additional generator relative to the single group. 

It will also be useful to enumerate the abstract halving subgroups in each case:- 

 

Order Group Halving subgroups 

2 C2 C1{E} 

4 
C4 C2{A2=E} 

C2C2 C2{A2=E} 

8 

C8 C4{A4=E} 

C4C2 C4{A4=E}; C2C2{A2=B2=E; BA=AB} 

D4 C4{A4=E}; C2C2{A2=B2=E; BA=AB} 

Q C4{A4=E}; C2C2{A2=B2=E; BA=AB} 

C2C2C2 C2C2{A2=B2=E; BA=AB} 
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4.1 The double group of the group of order one 

This case is trivial but does serve to illustrate that real representations can serve as the 

symmetries of electronic spin-orbitals.  The double group of C1 has to be C2 and the Г2 

representation of C2 is the only available double-valued representation.  Taking a pair of these 

the symmetric square will be 3Г1 and the antisymmetric square will be Г1.  C2 is therefore an 

acceptable spin double group for C1. 

 

4.2 The double group of the group of order two 

Both abstract groups of order four are candidates to be the double group of the abstract group 

of order two.   Superimposing the character tables illustrates this point well.  If C4 is to be the 

double group, the table below shows that Г3 and Г3* behave as double-valued representations 

for C2.  Further the antisymmetric square of this complex-conjugate pair is the totally-

symmetric representation so C4 is a suitable double group for studying the spin-½ problem. 

 

 C4 E A2 A A3 

C2  E  A  

Г1 Г1 1 1 1 1 

Г2 Г2 1 1 −1 −1 

 Г3 1 −1 i −i 

 Г3* 1 −1 −i i 

 

Turning now to Klein’s four-group as a possible double group of C2 the character tables can 

be matched up as  

 C2C2 E B A AB 

C2  E  A  

Г1 Г1 1 1 1 1 

Г2 Г3 1 1 −1 −1 

 Г2 1 −1 1 −1 

 Г4 1 −1 −1 1 

 

so that Г2 and Г4 of C2C2 can serve as double-valued representations.  Even though they are 

real and independently have no antisymmetric squares, taken as the pair Г2+Г4 they have Г3 as 

their antisymmetric square and so are not suitable for studying the spin problem.  This means 

that only the cyclic group of twice the order can serve as the spin double group.   

 

4.3 The double group of the cyclic group of order four 

Cyclic groups are 1-generator groups by definition hence the double group of a cyclic group 

must be presentable in terms of not more than two generators: C2C2C2 cannot therefore be 

regarded as a candidate.  Further, D4 and Q cannot be candidates because their character 

tables do not contain any complex numbers and hence their single-valued representations 

cannot be mapped onto the representations of the single group, C4 .  In the case of C8 the only 

twofold element, A4, is in the invariant subgroup of order 2 and so the character tables map 

as:- 

 C8 E A4 A2 A6 A A5 A3 A7 

C4  E  A2  A  A3  

Г1 Г1 1 1 1 1 1 1 1 1 

Г2 Г2 1 1 1 1 −1 −1 −1 −1 

Г3 Г3 1 1 −1 −1 i i −i −i 

Г3* Г3* 1 1 −1 −1 −i −i i i 

 Г4 1 −1 i −i √i −√i i√i −i√i 

 Г4* 1 −1 −i i −i√i i√i −√i √i 

 Г5 1 −1 i −i −√i √i −i√i i√i 

 Г5* 1 −1 −i i i√i −i√i √i −√i 
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where √i=(i+1)/2 and i√i=(i−1)/2.  This case is unusually interesting as it merits further 

examination.  If one takes the antisymmetric square of either of the complex-conjugate pairs 

of double-valued representations one obtains Г1.  If one takes the pair Г4 + Г5 one obtains the 

complex, single-valued, representation Г3* for the antisymmetric square while Г4* + Г5* 

produce its complex conjugate Г3.  However, if one takes either the pair Г4 + Г5* or the pair 

Г4* + Г5 one obtains Г2 .  This unexpected result is best understood by a consideration of the 

automorphisms of the group C8.  These form a group of four elements isomorphic with 

Klein’s four-group and generated by the inverse transformation, An→A7n, (which produces 

complex conjugation in the irreducible representations) and the transformation produced by 

replacing the generator A by A3.  The product of these two transformations is equivalent to 

replacing An by A5n.  The effect on the representations can be summarised in the following 

table:- 

An A7n A3n A5n 

Г3 Г3* Г3 Г3* 

Г3* Г3 Г3* Г3 

Г4 Г4* Г5* Г5 

Г4* Г4 Г5 Г5* 

Г5 Г5* Г4* Г4 

Г5* Г5 Г4 Г4* 

 

The character table is invariant to the same transformations as those of the elements of the 

group.  Mathematically the four irreducible representations {Г3 , Г3*, Г4 , Г4*} are distinct 1-

dimensional representations which form an orbit under the action of the automorphism group 

of the group, C8 .  Physically they form a separable quadruply-degenerate state so that they 

would all be associated with states of the same energy.  In the presence of a linear magnetic 

field, however, the quadruple degeneracy is lifted into two pairs of complex-conjugate double 

degeneracies.  

To consider C4C2 as a potential double group of C4 the character tables may be matched 

as follows:- 

 

 C4C2 E B A2 A2B A AB A3 A3B 

C4  E  A2  A  A3  

Г1 Г1 1 1 1 1 1 1 1 1 

Г2 Г2 1 1 1 1 −1 −1 −1 −1 

Г3 Г3 1 1 −1 −1 i i −i −i 

Г3*   Г3* 1 1 −1 −1 −i −i i i 

 Г4 1 −1 1 −1 1 −1 1 −1 

 Г5 1 −1 1 −1 −1 1 −1 1 

 Г6 1 −1 −1 1 i −i −i i 

   Г6* 1 −1 −1 1 −i i i −i 

 

The relevant invariant subgroup of order 2 is {E, B}.  Г4 , Г5 , Г6 and Г6* are then the double-

valued representations as they have characters for B which are minus those for E.  The 

problem is, however, that the real double-valued representations, Г4 and Г5 , cannot be used to 

construct states which have an antisymmetric square equal to Г1.  Hence they cannot represent 

spin-orbitals involving spin-½ functions even though the complex-conjugate pair, Г6 and Г6*, 

satisfy this criterion. 

The spin double group of the cyclic group of order 4 must therefore be the cyclic group of 

order 8. 

 

4.4 The double group of Klein’s four-group, C2C2 

Since Klein’s four-group is a two-generator group, the cyclic group C8 can immediately be 

ruled out as a possible double group.  The elementary group C2C2C2 and the dihedral 
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group D4 are both ineligible as they only contain representations which cannot be used to 

produce an antisymmetric square containing the identity representation. 

This leaves just C4C2 and Q and we shall see that both are possible structures for double 

groups of Klein’s four-group.  To justify C4C2 it is helpful to rearrange the rows and 

columns of the character table without changing the labelling of the representations of C4C2 

above to produce:- 

 C4C2 E A2 A A3 B A2B AB A3B 

C2C2  E  A  B  AB  

Г1 Г1 1 1 1 1 1 1 1 1 

Г2 Г4 1 1 1 1 −1 −1 −1 −1 

Г3 Г2 1 1 −1 −1 1 1 −1 −1 

Г4 Г5 1 1 −1 −1 −1 −1 1 1 

 Г3 1 −1 i −i 1 −1 i −i 

   Г3* 1 −1 −i i 1 −1 −i i 

 Г6 1 −1 i −i −1 1 −i i 

   Г6* 1 −1 −i i −1 1 i −i 

 

from which it can be seen that the four complex representations of C4C2 now serve as 

double-valued representations of the double group of Klein’s four-group.  Further, the 

antisymmetric squares of the sum of either of the complex-conjugate pairs is the totally-

symmetric representation, Г1 , and hence C4C2 appears to be a suitable double group for 

application to the electron-spin problem. 

When the corresponding table for Q is constructed the doubly-degenerate representation 

Г5 of Q has all the required properties and so Q is also a possible structure for the spin double 

group of Klein’s four-group. 

 

 Q E A2 A, A3 B, A2B AB, A3B 

C2C2  E  A B AB 

Г1 Г1 1 1 1 1 1 

Г2 Г2 1 1 1 −1 −1 

Г3 Г3 1 1 −1 1 −1 

Г4 Г4 1 1 −1 −1 1 

 Г5 2 −2 0 0 0 

 

Comparison of the conjugacy-class structures provides an elegant demonstration of the 2:1 

homomorphism between the double group and the single group as well as the identification of 

Г5 of Q as the double-valued representation. 

To decide which of the two possible groups to use as the spin double group we have to 

consider the relationship between the double groups of C2 and C4 .  On subduction from the 

double group of C4 to that of C2 we would have to choose which of the generators of C4C2 

was to remain a four-fold element and which was to become a two-fold element.  But it has 

been seen that any two-fold generator of C2 becomes a four-fold generator in the double 

group of C2 which must be a subgroup of the double group of C4 . 

In considerations of spin-free molecular symmetry there are just three types of two-fold 

element, viz. space inversion, two-fold rotations and reflections.  Space inversion is treated 

separately for this purpose as it is assumed that the spin problems are independent of whether 

we use a right-handed or a left-handed set of coördinates.  Hence space inversion is included 

by factorising a symmetry group containing space inversion into a C2 group consisting of the 

identity and space inversion and a group which may contain rotations, reflections and 

combinations of these.  Symmetry groups containing space inversion are thus best considered 

as direct product groups and the space inversion operation is taken to commute with all 

elements of the double group of the inversion-free part.  Further, spin functions are taken to 

be invariant to space inversion, i.e. they are gerade or g-type. 
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This leaves the quaternion group Q as the only acceptable spin double group of Klein’s 

four-group. 

 

5. Construction of spin orbitals for the double group of C4 
This example is sufficiently interesting to merit inclusion here as it provides the key to the 

general problem and has probably not been published elsewhere.  We know very little about 

electronic spin functions except that they are characterised by two quantum numbers, S and 

Sz , which are related to the eigenvalues of the spin operators Ŝ2 and Ŝz by the familiar 

relationships Ŝ2σ(S,Sz) = S(S+1)σ(S,Sz) and Ŝzσ(S,Sz) = Szσ(S,Sz).  Converting functions with 

given values of S and Sz to those with neighbouring values of Sz is effected by the ladder 

operators Ŝ+ and Ŝ− which have the effects Ŝσ(S,Sz) = {(SSz)(SSz+1)}½σ(S,Sz1).  It is 

usual to abbreviate σ(½,½) as  and σ(½,−½) as β. 

For group-theoretical analysis the effects of the symmetry operators on the spin functions 

are required.  This is given in the case of one-dimensional representations by the character 

tables.  Thus the generator A of C8 acting on the spin function  produces  multiplied by 

one of the four eighth roots of unity.  Which of the four is chosen is entirely a matter of 

convention and the customary choice is to take that which is the lowest power of exp(2i).  In 

this case it will be exp(i/4)=i.  Correspondingly the effect of A on β must produce the 

complex conjugate −iiβ.  These definitions assign the 1-electron spin functions to the Г4 and 

Г4* representations respectively. 

Now suppose that we have two electrons labelled 1 and 2 with spin functions (1), (2), 

β(1) and β(2).  The antisymmetric square of Г4+Г4* is Г1 so that (1)β(2)−β(1)(2) is totally-

symmetric and of Sz-value zero.  The symmetric square produces the un-normalised functions 

(1)(2), (1)β(2)+β(1)(2) and β(1)β(2) for the triplet (i.e. S=1) state with Sz values +1, 0 

and −1 respectively.  These states are of symmetries Г3 , Г1 and Г3* respectively.  These are 

single-valued representations as is to be expected for states involving an even number of 

electrons. 

To find spin functions spanning the double-valued representations Г5 and Г5* it is 

necessary to consider functions for 3 or more electrons[2].  The four un-normalised three-

electron functions having S=3/2 and Sz = 3/2, ½, −½ and −3/2 are respectively (1)(2)(3), 

(1)(2)β(3)+(1)β(2)(3)+β(1)(2)(3), β(1)β(2)(3)+β(1)(2)β(3)+(1)β(2)β(3) and 

β(1)β(2)β(3) and span the irreducible representations Г5*. Г4 , Г4* and Г5 .  To show that these 

four spin functions form a “closed shell” requires that the determinantally-antisymmetric 

fourth power of {Г4 , Г4*, Г5 , Г5*} contains the identity representation which is the case. 

 

6. Three-fold symmetry 
The other chain of symmetry groups which is important in crystallographic symmetries 

although not exclusively fir free molecules is that deriving from the ascent C1→C3 .  In this 

case the double group of C3 will be a group of order 6.  There are just two abstract groups of 

this order.  The central extension produces the cyclic group C6 defined by {A6=E} while a 

splitting extension produces the dihedral group D3 defined by {A3=B2=E; BA=A2B}.  The 

dihedral group of six elements cannot be chosen as the spin double group because it has no 

complex representations which can be matched onto the single-valued complex 

representations Г2 and Г3 of C3 . 

The character tables of C3 and C6 may be matched as 

 C6 E A3 A A4 A2 A5 

C3  E  A  A2  

Г1 Г1 1 1 1 1 1 1 

Г2 Г2 1 1 ω* ω* ω ω 

Г3 Г3 1 1 ω ω ω* ω* 

 Г4 1 −1 −1 1 1 −1 

 Г5 1 −1 −ω* ω* ω −ω 

 Г6 1 −1 −ω ω ω* −ω* 
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where ω=exp(2i/3)=(−1+i3)/2 and its complex conjugate, ω*, are the complex cube roots 

of unity as in section 2.3 above.  Antisymmetric squares can only be formed from the 

complex-conjugate pairs Г2+Г3 and Г5+Г6 .  In both cases the antisymmetric square will be 

Г1 . 

If Г5 rather than Г6 of C3 is chosen as the symmetry of the -spin function, the pattern 

established in section 5 above can be followed.  The effect of the operator A of the double 

group is to multiply the -spin function by exp(i/3)=−ω* and the β-spin function, which will 

have the symmetry of Г6 , by its inverse, exp(−i/3)=−ω. 
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