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Abstract. Some supersymmetric partners of the harmonic oscillator Hamiltonian possess
third-order differential ladder operators and, thus, they realize the second-order polynomial
Heisenberg algebras. The corresponding spectra consist of an infinite ladder of energy levels
plus a finite one that can be placed at any position with respect to the infinite ladder. Both of
them have equally spaced energy levels. Departing from these Hamiltonians several families of
real and complex solutions to the Painlevé IV equation with real parameters will be generated.

1. Introduction
The interest in analyzing systematically the links which can be established between
supersymmetric quantum mechanics (SUSY QM) and nonlinear differential equations is
increasing over time [1–3]. In fact, there is a well known connection between the SUSY partners of
the free particle and solutions to the KdV equation [4]. One of the aims in this paper is to discuss
the existence of an additional link, now between SUSY QM and Painlevé IV (PIV) equation.
By exploiting this fact, a procedure for generating solutions of the PIV equation can be easily
designed [2]. Up to our knowledge, the first people who established the link between first-order
SUSY QM and PIV equation were Veselov and Shabat [5], Dubov, Eleonsky and Kulagin [6],
Adler [7]. This was further explored for higher-order SUSY by Andrianov, Cannata, Ioffe and
Nishnianidze [8], Fernández, Negro and Nieto [9], Carballo, Fernández, Negro and Nieto [10],
Mateo and Negro [11], Bermudez and Fernández [1–3,12] (see also [13]).

In order to perform this task, we have organized the paper as follows. In sections 2 and 3 we
will introduce the SUSY QM and the second-order polynomial Heisenberg algebras respectively.
In section 4 we will apply the SUSY QM to the harmonic oscillator while in section 5 we will
establish the corresponding connection with Painlevé IV equation. In addition, several solutions
to this equation, real and complex, will be derived. Our conclusions are contained in section 6.

2. SUSY QM
Let us consider the following intertwining relations [14–21]:

Hi+1A
+
i+1 = A+

i+1Hi, (1)

A+
i+1 =

1√
2

[
− d

dx
+ αi+1(x, ϵi+1)

]
, (2)
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Hi = −1

2

d2

dx2
+ Vi(x), i = 0, . . . , k. (3)

Thus, the following equations are satisfied:

α′
i+1(x, ϵi+1) + α2

i+1(x, ϵi+1) = 2[Vi(x)− ϵi+1], (4)

Vi+1(x) = Vi(x)− α′
i+1(x, ϵi+1). (5)

The key point in this treatment is to realize that the solutions to the Riccati equation (4)
can be obtained by algebraic means in terms of those of the Riccati equation for the previous
system [18,19], namely,

αi+1(x, ϵi+1) = −αi(x, ϵi)−
2(ϵi − ϵi+1)

αi(x, ϵi)− αi(x, ϵi+1)
, (6)

which implies that αi+1(x, ϵi+1) is determined either from i+ 1 solutions α1(x, ϵj) of the initial
Riccati equation

α′
1(x, ϵj) + α2

1(x, ϵj) = 2[V0(x)− ϵj ], j = 1, . . . , i+ 1, (7)

or from i+ 1 solutions uj of the associated Schrödinger equation

−1

2
u′′j + V0(x)uj = ϵjuj , j = 1, . . . , i+ 1. (8)

The initial and final Hamiltonians, H0 and Hk, satisfy the following intertwining relations

HkB
+
k = B+

k H0, H0Bk = BkHk, (9)

Bk = A1 . . . Ak, B+
k = A+

k . . . A
+
1 . (10)

In the same way, the initial and final potentials V0, Vk are linked through

Vk(x) = V0(x)− {ln[W (u1, . . . , uk)]}′′, (11)

where W (u1, . . . , uk) denotes the Wronskian of the k solutions {u1(x), . . . , uk(x)}. In addition,
the eigenfunctions of Hk are given by

ψ(k)
n = [(En − ϵ1) . . . (En − ϵk)]

− 1
2 B+

k ψn, En, (12)

ψ(k)
ϵj ∝ W (u1, . . . , uj−1, uj+1, . . . , uk)

W (u1, . . . , uk)
, ϵj . (13)

Thus, given the potential V0(x) and k solutions {u1(x), . . . , uk(x)} of the initial stationary
Schrödinger equation associated with the factorization energies {ϵ1, . . . , ϵk}, the new potential
Vk(x) of equation (11) is essentially determined, with eigenfunctions and eigenvalues given in
equations (12-13).

3. Second-order polynomial Heisenberg algebras
Them-th order polynomial Heisenberg algebras (PHA) are deformations of the Heisenberg-Weyl
algebra of kind [10] (see also [22,23]):

[H,L±] = ±L±, (14)

[L−,L+] ≡ Qm+1(H + 1)−Qm+1(H) = Pm(H), (15)

Qm+1(H) = L+L− =
m+1∏
i=1

(H − Ei) . (16)
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Figure 1. The spectrum of systems ruled by polynomial Heisenberg algebras can have either s
infinite ladders (a) or s− 1 infinite plus a finite one if equation (19) is satisfied (b).

One of the simplest realizations is a differential one, in which H is a one-dimensional Schrödinger
Hamiltonian

H = −1

2

d2

dx2
+ V (x), (17)

and L± are differential ladder operators of order (m+ 1)-th.
The spectral properties of systems ruled by PHA depend on the number s of physical

eigenstates of H which also belong to the kernel of L−:

L−ψEi = 0, HψEi = EiψEi , i = 1, . . . , s. (18)

Departing from them, s physical ladders of H can be constructed through the action of L+, see
figure 1(a). If, however, it happens that(

L+
)n−1

ψEj ̸= 0,
(
L+

)n
ψEj = 0 ⇒ Ek = Ej + n, (19)

then the j-th ladder starts from Ej but ends at Ej + n− 1, as shown in figure 1(b).
In this work we are particularly interested in second-order PHA, with m = 2, for which:

Q3(H) = (H − E1) (H − E2) (H − E3) , (20)

P2(H) = 3H2 + [3− 2(E1 + E2 + E3)]H (21)

+1− (E1 + E2 + E3) + E1E2 + E1E3 + E2E3. (22)

In this case our differential ladder operators L± are of third order, and the corresponding
Hamiltonian could have up to three independent physical ladders starting from E1, E2 and E3.

In order to identify the corresponding systems, let us take L± such that [8–10]:

L+ = I+1 I
+
2 , (23)

I+1 =
1√
2

[
− d

dx
+ f(x)

]
, I+2 =

1

2

[
d2

dx2
+ g(x)

d

dx
+ h(x)

]
, (24)

HI+1 = I+1 (Ha + 1), HaI
+
2 = I+2 H. (25)

By using the standard expressions for first and second-order SUSY QM we obtain

−f ′ + f2 = 2(V − E3), (26)

Va = V + f ′ − 1 = V + g′, (27)

g′′

2g
−

(
g′

2g

)2

− g′ +
g2

4
+

(E1 − E2)2

g2
+ E1 + E2 − 2 = 2V, (28)

h = −g
′

2
+
g2

2
− 2V + E1 + E2 − 2. (29)
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By decoupling this system it turns out that

f(x) = x+ g(x), (30)

h(x) = −x2 + g′

2
− g2

2
− 2xg + a, (31)

V (x) =
x2

2
− g′

2
+
g2

2
+ xg + E3 −

1

2
, (32)

where g satisfies

g′′ =
g′2

2g
+

3

2
g3 + 4xg2 + 2

(
x2 − a

)
g +

b

g
, (33)

which is the Painlevé IV equation with parameters (∆ = E1 − E2):

a = E1 + E2 − 2E3 − 1, b = −2∆2. (34)

The extremal states of our system turn out to be

ψE1 ∝
(
g′

2g
− g

2
− ∆

g
− x

)
exp

[∫ (
g′

2g
+
g

2
− ∆

g

)
dx

]
, (35)

ψE2 ∝
(
g′

2g
− g

2
+

∆

g
− x

)
exp

[∫ (
g′

2g
+
g

2
+

∆

g

)
dx

]
, (36)

ψE3 ∝ exp

(
−x

2

2
−
∫
g dx

)
. (37)

In particular, it is important to note that

g(x) = −x− {ln[ψE3(x)]}′. (38)

This means that, if we would know systems ruled by second-order PHA, particularly its extremal
states, we could find solutions to the PIV equation. This idea will be explored further in section
5.

4. Harmonic oscillator SUSY partners
In order to apply the SUSY techniques, we need the solution of the Schrödinger equation for
V0(x) = x2/2 and arbitrary ϵ, which is given by [24]:

u = e−
x2

2

[
1F1

(
1− 2ϵ

4
,
1

2
;x2

)
+ 2xν

Γ(3−2ϵ
4 )

Γ(1−2ϵ
4 )

1F1

(
3− 2ϵ

4
,
3

2
;x2

)]
. (39)

Let us perform now a k-th order SUSY transformation by using {u1, . . . , uk} such that
ϵk < . . . < ϵ1 < 1/2, |νj | < 1 for odd j, |νj | > 1 for even j. Thus, k new levels are created so
that

Sp(Hk) = {ϵj , En, j = k, . . . , 1, n = 0, 1, . . .}. (40)

Let us note that there are differential ladder operators for Hk of order 2k + 1:

L−
k = B+

k aBk, L+
k = B+

k a
+Bk. (41)
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Figure 2. Diagram representing the two SUSY partner Hamiltonians H0 and Hk and their
associated ladder operators a+, a and L±

k , respectively.

Since

Q2k+1(Hk) =

(
Hk −

1

2

) k∏
i=1

(Hk − ϵi − 1) (Hk − ϵi) , (42)

it is seen that they generate a PHA of order 2k, namely:

[L−
k , L

+
k ] = P2k(Hk). (43)

Moreover, since to every root ϵj of Q2k+1(Hk) there is associated other one ϵj + 1, we can say
that Sp(Hk) contains k one-step ladders, each one of them starting and ending at ϵj , j = 1, . . . , k.
In addition, there is an infinite ladder starting from E0 = 1/2 (see diagram in figure 2).

5. Solutions of PIV equation through SUSY QM
As we saw in the previous section, L±

1 are third-order differential ladder operators, but L±
k are

of order greater than three for k > 1. Thus the question arises: is it possible to reduce to three
the order of these ladder operators for k > 1? If so, we could obtain systems which perhaps
would supply us with solutions to the PIV equation [25]. The answer turns out to be positive,
and it is contained in the following theorem [1,2].

Theorem. Suppose that Hk is generated by k connected seed solutions

uj = aj−1u1, ϵj = ϵ1 − (j − 1), j = 1, . . . , k, (44)

u1(x) being an independent seed solution in the form given in equation (39) such that ϵ1 < 1/2
and |ν1| < 1. Thus

L+
k = Pk−1(Hk)l

+
k , (45)

where Pk−1(Hk) = (Hk − ϵ1) . . . (Hk − ϵk−1) and l+k turns out to be a third-order differential
ladder operator such that

[Hk, l
+
k ] = l+k , (46)

l+k l
−
k = (Hk − ϵk)

(
Hk − 1

2

)
(Hk − ϵ1 − 1). (47)

8th International Symposium on Quantum Theory and Symmetries (QTS8) IOP Publishing
Journal of Physics: Conference Series 512 (2014) 012017 doi:10.1088/1742-6596/512/1/012017

5



Figure 3. Parameter space where we can obtain real non-singular solutions to the PIV equation.

Let us note that the operators l±k already connect the levels {ϵj , j = 1, . . . , k}, which form
a finite ladder of lenght k starting from ϵk = ϵ1 − (k − 1) and finishing at ϵ1. Moreover, the
operator l+k annihilates only the eigenstate associated to ϵ1 while the operator l−k annihilates the
following three extremal states:

ψE1 ∝ B+
k e

−x2/2, E1 = 1/2, (48)

ψE2 ∝ B+
k a

+u1, E2 = ϵ1 + 1, (49)

ψE3 ∝ W (u1, . . . , uk−1)

W (u1, . . . , uk)
, E3 = ϵk = ϵ1 − (k − 1). (50)

From equation (38), it is clear now that departing from the third extremal state we can
generate non-singular real solutions to the PIV equation. Indeed, the potential and the
corresponding solution to the PIV equation are given by:

V (x) =
x2

2
− [lnW (u1, . . . , uk)]

′′ , (51)

g(x) =



−x+ [lnu1]
′ for k = 1

−x−
[
ln

u1
W (u1, u2)

]′
for k = 2

−x−
[
ln
W (u1, . . . , uk−1)

W (u1, . . . , uk)

]′
for k > 2

(52)

and the connection between the parameters ϵ1, k of the SUSY transformation and a, b of the
PIV equation is as follows

a = −ϵ1 + 2k − 3

2
, b = −2

(
ϵ1 +

1

2

)2

. (53)

The curves on the parameter space a-b where we have real non-singular solutions to the PIV
equation are shown in figure 3. An example of the SUSY partner potential of the oscillator as
well as the corresponding PIV solution is given in figure 4.
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Figure 4. Third-order SUSY partner potential of the oscillator (left) and PIV solution (right)
for ϵ1 = 0, ν1 = 0.99.

Let us stress that the restrictions ϵ1 < E0, |ν1| < 1 were needed to produce a non-singular
potential Vk(x) and its PIV solution, i.e., the full finite ladder of Hk is placed below E0. From
the viewpoint of spectral design it would be important to surpass this restriction so that the
finite ladder of Hk could be placed above E0 (at least partially). This can be done by using
complex transformation functions u1 but associated to ϵ1 ∈ R [12, 26]. The price to pay is that
the generated potentials will now be complex, but with real energy spectra. The main change
with respect to our previous treatment is that the employed complex seed solution reads now

u1(x) = e−x2/2

[
1F1

(
1− 2ϵ1

4
,
1

2
;x2

)
+ Λx 1F1

(
3− 2ϵ1

4
,
3

2
;x2

)]
, (54)

where Λ = λ + iκ (λ, κ ∈ R) and ϵ1 ∈ R, which leads once again to a Hamiltonian having
third-order differential ladder operators.

The extremal states become once again those given in equations (48-50). The PIV solution
and its associated parameters are

gk(x) = −x− {ln[ψE3(x)]}′ = −x−
{
ln

[
W (u1,...,uk−1)
W (u1,...,uk)

]}′
, (55)

ai = −ϵ1 + 2k − 3
2 , bi = −2

(
ϵ1 +

1
2

)2
. (56)

Note that the cyclic permutations of the indexes in the extremal states and associated energies
leads now to two additional non-singular solutions of the PIV equation:

gk(x) = −x−
{
ln

[
B+

k e
−x2/2

]}′
, aii = 2ϵ1 − k, bii = −2k2, (57)

gk(x) = −x−
{
ln

[
B+

k a
+u1

]}′
, aiii = −ϵ1 − k − 3

2 , biii = −2(ϵ1 − k + 1
2)

2. (58)

In the parameter space of the PIV equation now we get additional curves on which we have
non-singular (complex) solutions (see figure 5). An example of this kind of complex solutions
can be seen in figure 6.

6. Conclusions
In this work we have shown that the general Schrödinger Hamiltonians ruled by second-order
polynomial Heisenberg algebras, i.e., having third-order differential ladder operators, are linked
to the PIV equation. Moreover, a prescription for generating solutions of the PIV equation
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Figure 5. Parameter space where we can obtain complex non-singular solutions to the PIV
equation.

Figure 6. Real and imaginary parts (solid and dashed lines) of a complex solution to PIV for
aii = 12, bii = −8 (k = 2, ϵ1 = 7, λ = κ = 1)

departing from the SUSY partners of the harmonic oscillator has been proposed. The associated
potentials have two physical ladders of equally spaced energy levels: an infinite one starting from
1/2 and a finite one, placed either completely below 1/2 for real transformation functions or at
any arbitrary position on the real energy axis for complex ones, both for ϵ1 ∈ R.
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