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Abstract. We construct the N = 2 supersymmetric nonlinear sigma model on the cotangent
bundle over the compact Hermitian symmetric space E7/E6 × U(1) by using the projective
superspace formalism which is an off-shell superfield formulation in four-dimensional space-
time. We also give a simple formula giving the hyper-Kähler potential of the cotangent bundle
over all the compact Hermitian symmetric spaces.

1. Introduction
Supersymmetry (SUSY) has intimate relations to the complex geometry [1]. In particular,

the target space of SUSY nonlinear sigma models (NLSMs) possessing 8 supercharges must be
hyper-Käbler manifold [2]. It means that SUSY is a powerful tool to construct a new hyper-
Käbler manifold. In other words, a new hyper-Kḧaler manifold can be obtained through a new
SUSY NLSM with 8 supercharges. One of the most convenient formulations to construct SUSY
NLSMs with 8 supercharges is the projective superspace formalism [3, 4, 5, 6] being an off-shell
superfield formulation in theories with 8 supercharges 1.

The projective superspace formalism is a powerful devise to construct N = 2 SUSY NLSMs.
With the use of this formalism, first the SUSY NLSMs on the tangent bundles over the
compact and non-compact classical Hermitian symmetric as well as, using the generalized
Legendre transform [4], the cotangent bundles corresponding to the hyperkähler metrics have
been constructed [9, 10, 11, 12]. Developed the results in [9, 10, 11, 12], the cotangent bundle
over the compact type of E6/SO(10)×U(1) have been also constructed [13]. After these works,
the closed form expression of the cotangent bundle over any compact Hermitian symmetric
space was obtained [14], which gives a form of the cotangent bundle presented in a matrix form.
We elaborated on this result to provide a new closed formula for cotangent bundle action, and
applied it to construction of the N = 2 SUSY NLSM on the cotangent bundle over the compact
E7/E6 × U(1) [15]. In this proceeding, we review our work based on [15].

1 There is another N = 2 off-shell superfield formulation called the harmonic superspace formalism [7, 8].
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2. N = 2 sigma models in the projective superspace
We start with a family of four-dimensional N = 2 off-shell supersymmetric nonlinear sigma

models that are described in ordinary N = 1 superspace by the action:

S[Υ, Ῠ] =
1

2πi

∮
dζ

ζ

∫
d8z K

(
ΥI(ζ), ῨJ̄(ζ)

)
, zM = (xµ, θα, θ̄

α̇), (2.1)

where µ = 0, 1, 2, 3 and α, α̇ = 1, 2. The complex coordinate ζ which is called the projective
coordinate parameterizes SU(2)R/U(1) where SU(2)R is the internal symmetry. Action in the
projective superspace is written by using contour integral over ζ, and reality conditions are
imposed using complex conjugation of ζ composed with the antipodal map. The action is
formulated in terms of the so-called polar multiplet [4, 5, 6], one of N = 2 multiplets living
in the projective superspace. The polar multiplet is described by the so-called arctic superfield
Υ(ζ) and antarctic superfield Ῠ(ζ) that are generated by an infinite set of ordinary N = 1
superfields:

Υ(ζ) =

∞∑
n=0

Υnζ
n = Φ + Σ ζ +O(ζ2) , Ῠ(ζ) =

∞∑
n=0

Ῡn(−ζ)−n , (2.2)

where Ῠ is the conjugation of Υ under the composition of complex conjugation with the antipodal
map on the Riemann sphere, ζ̄ → −1/ζ. Here Φ is chiral, Σ complex linear,

D̄.αΦ = 0 , D̄2Σ = 0 , (2.3)

and the remaining component superfields are unconstrained complex superfields. The above
theory is obtained as a minimal N = 2 extension of the general four-dimensional N = 1
supersymmetric nonlinear sigma model [1]

S[Φ, Φ̄] =

∫
d8z K(ΦI , Φ̄J̄) , (2.4)

where K is the Kähler potential of a Kähler manifold M.
To describe the theory in terms of the physical superfields Φ and Σ only, all the auxiliary

superfields have to be eliminated with the aid of the corresponding algebraic equations of motion∮
dζ

ζ
ζn

∂K(Υ, Ῠ)

∂ΥI
=

∮
dζ

ζ
ζ−n

∂K(Υ, Ῠ)

∂ῨĪ
= 0 , n ≥ 2 . (2.5)

Let Υ∗(ζ) ≡ Υ∗(ζ; Φ, Φ̄,Σ, Σ̄) denote a unique solution subject to the initial conditions

Υ∗(0) = Φ ,
.
Υ∗(0) = Σ . (2.6)

For a general Kähler manifoldM, the auxiliary superfields Υ2,Υ3, . . . , and their conjugates,
can be eliminated only perturbatively. Their elimination can be carried out using the ansatz
[16]

ΥI
n =

∞∑
p=0

GIJ1...Jn+p L̄1...L̄p
(Φ, Φ̄) ΣJ1 . . .ΣJn+p Σ̄L̄1 . . . Σ̄L̄p , n ≥ 2 . (2.7)

Upon elimination of the auxiliary superfields, the action (2.1) should take the form [9, 10]

Stb[Φ,Σ] =

∫
d8z

{
K
(
Φ, Φ̄

)
+ L

(
Φ, Φ̄,Σ, Σ̄

)}
, (2.8)
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where

L
(
Φ, Φ̄,Σ, Σ̄

)
=
∞∑
n=1

LI1···InJ̄1···J̄n
(
Φ, Φ̄

)
ΣI1 . . .ΣInΣ̄J̄1 . . . Σ̄J̄n . (2.9)

The first term in the expansion (2.9) is given as LIJ̄ = −gIJ̄
(
Φ, Φ̄

)
and the tensors LI1···InJ̄1···J̄n

for n > 1 are functions of the Riemann curvature RIJ̄KL̄
(
Φ, Φ̄

)
and its covariant derivatives.

Eq. (2.8) is written by the base manifold coordinate Φ and the tangent space coordinate Σ.
Therefore this is the tangent bundle action.

The complex linear tangent variables Σ’s in (2.8) can be dualized into chiral one-forms, in
accordance with the generalized Legendre transform [4]. To construct a dual formulation, we
consider the first-order action

S =

∫
d8z

{
K
(
Φ, Φ̄

)
+ L

(
Φ, Φ̄,Σ, Σ̄

)
+ ΨI ΣI + Ψ̄ĪΣ̄

Ī
}
, (2.10)

where the tangent vector ΣI is now a complex unconstrained superfield, while the one-form Ψ
is chiral, D̄.αΨI = 0. Integrating out Σ’s and their conjugate should give the cotangent-bundle
action

Sctb[Φ,Ψ] =

∫
d8z

{
K
(
Φ, Φ̄

)
+H

(
Φ, Φ̄,Ψ, Ψ̄

)}
, (2.11)

where

H
(
Φ, Φ̄,Ψ, Ψ̄

)
=
∞∑
n=1

HI1···InJ̄1···J̄n(Φ, Φ̄)ΨI1 . . .ΨInΨ̄J̄1
. . . Ψ̄J̄n , (2.12)

with HIJ̄
(
Φ, Φ̄

)
= gIJ̄

(
Φ, Φ̄

)
. The variables (ΦI ,ΨJ) parametrize the cotangent bundle T ∗M

of the Kähler manifold M. The action (2.11) is written by chiral superfields only, so the action
gives hyperkähler potential.

3. The tangent bundle
In what follows, we consider the case when M is a Hermitian symmetric space:

∇LRI1J̄1I2J̄2
= ∇̄L̄RI1J̄1I2J̄2

= 0 . (3.1)

Then, the algebraic equations of motion (2.5) are known to be equivalent to the holomorphic
geodesic equation (with complex evolution parameter) [9, 10]

d2ΥI
∗(ζ)

dζ2
+ ΓIJK

(
Υ∗(ζ), Φ̄

) dΥJ
∗ (ζ)

dζ

dΥK
∗ (ζ)

dζ
= 0 , (3.2)

under the same initial conditions (2.6). Here ΓIJK(Φ, Φ̄) are the Christoffel symbols for the
Kähler metric gIJ̄(Φ, Φ̄) = ∂I∂J̄K(Φ, Φ̄). In particular, we have

ΥI
2 = −1

2
ΓIJK

(
Φ, Φ̄

)
ΣJΣK . (3.3)

According to the principles of projective superspace [4, 5], the action (2.1) is invariant under
the N = 2 supersymmetry transformations

δΥI(ζ) = i
(
εαi Q

i
α + ε̄iα̇Q̄

α̇
i

)
ΥI(ζ), (3.4)
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when ΥI(ζ) is viewed as a N = 2 superfield. Here i = 1, 2 is the SU(2)R index. However, since
the action is given in N = 1 superspace, it is only the N = 1 supersymmetry which is manifestly
realized. The second hidden supersymmetry can be shown to act on the physical superfields Φ
and Σ as follows (see, e.g. [6])

δΦI = ε̄.αD̄
.
αΣI , δΣI = −εαDαΦI + ε̄.αD̄

.
αΥI

2 . (3.5)

Upon elimination of the auxiliary superfields, the action (2.8), which is associated with the
Hermitian symmetric space M, is invariant under

δΦI = ε̄.αD̄
.
αΣI , δΣI = −εαDαΦI − 1

2
ε̄.αD̄
.
α
{

ΓIJK
(
Φ, Φ̄

)
ΣJΣK

}
. (3.6)

The invariance of the action (2.8) under (3.6) requires to satisfy the the following first-order
differential equation

1

2
RKJ̄L

I ∂L
∂ΣI

ΣKΣL +
∂L
∂Σ̄J̄

+ gIJ̄ ΣI = 0 . (3.7)

The solution to the equation (3.7) was first presented in [13] in the form

L = −eRΣ,Σ̄ − 1

RΣ,Σ̄

|Σ|2 , |Σ|2 := gIJ̄ΣIΣ̄J̄ . (3.8)

An alternative form of the solution was obtained in [14]:

L(Φ, Φ̄,Σ, Σ̄) = −1

2
ΣTg

ln(1 + RΣ,Σ̄)

RΣ,Σ̄

Σ , (3.9)

where

Σ =

(
ΣI

Σ̄Ī

)
, g =

(
0 gIJ̄
gĪJ 0

)
, (3.10)

RΣ,Σ̄ =

(
0 (RΣ)I

J̄

(RΣ̄)Ī
J

)
=

(
0 1

2R
I

K LJ̄
ΣKΣL

1
2R

Ī
K̄ L̄J

Σ̄K̄Σ̄L̄

)
. (3.11)

We shall rewrite (3.9) using the following differential operators

RΣ,Σ̄ = −(RΣ)IJ̄ Σ̄J̄ ∂

∂ΣI
, R̄Σ,Σ̄ = −(RΣ̄)ĪJΣJ ∂

∂Σ̄Ī
. (3.12)

These operators were originally introduced in [13]. They satisfy the relation

RΣ,Σ̄L(n) = R̄Σ,Σ̄L(n) . (3.13)

Performing the Taylor expansion for (3.9), we have

L =

∞∑
n=1

cnF
(n) , cn =

(−1)n

n
, (3.14)

where the functions F (n) given by

F (2k+2) = ΣIgIJ̄

((
RΣ̄RΣ

)k)J̄
K̄

(RΣ̄)K̄LΣL , k = 0, 1, 2 . . . (3.15)

F (2k+1) = ΣIgIJ̄

((
RΣ̄RΣ

)k)J̄
K̄

Σ̄K̄ , k = 0, 1, 2 . . . (3.16)
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satisfy relations

ΣI ∂

∂ΣI
F (n) = Σ̄Ī ∂

∂Σ̄Ī
F (n) = nF (n) , (3.17)

∂

∂ΣI
F (2k+2) = (2k + 2)gIJ̄

(
(RΣ̄RΣ)kRΣ̄

)J̄
K

ΣK , (3.18)

∂

∂ΣI
F (2k+1) = (2k + 1)gIJ̄

(
(RΣ̄RΣ)k

)J̄
K̄

Σ̄K̄ . (3.19)

Using these identities, one can easily prove

F (n+1) =
(−RΣ,Σ̄)n

n!
|Σ|2 . (3.20)

Putting this into (3.14), we arrive at

L = −
∞∑
n=1

(RΣ,Σ̄)n−1

n!
|Σ|2 = −

1∫
0

dt etRΣ,Σ̄ |Σ|2 = −eRΣ,Σ̄ − 1

RΣ,Σ̄

|Σ|2 . (3.21)

This form coincides with (3.8).

4. The cotangent bundle
We start with (2.10) to construct a dual formulation [13]. The action can be shown to be

invariant under the following supersymmetry transformations

δΦI =
1

2
D̄2
{
εθΣI

}
,

δΣI = −εαDαΦI − 1

2
ε̄.αD̄
.
α
{

ΓIJK
(
Φ, Φ̄

)
ΣJΣK

}
− 1

2
εθ ΓIJK

(
Φ, Φ̄) ΣJD̄2ΣK ,

δΨI = −1

2
D̄2
{
εθKI

(
Φ, Φ̄)

}
+

1

2
D̄2
{
εθ ΓKIJ

(
Φ, Φ̄

)
ΣJ
}

ΨK . (4.22)

These transformations induce the supersymmetry transformations making the action (2.11)
invariant

δΦI =
1

2
D̄2
{
εθΣI

(
Φ, Φ̄,Ψ, Ψ̄

)}
,

δΨI = −1

2
D̄2
{
εθKI

(
Φ, Φ̄)

}
+

1

2
D̄2
{
εθ ΓKIJ

(
Φ, Φ̄

)
ΣJ
(
Φ, Φ̄,Ψ, Ψ̄

)}
ΨK , (4.23)

with

ΣI
(
Φ, Φ̄,Ψ, Ψ̄

)
=

∂

∂ΨI
H
(
Φ, Φ̄,Ψ, Ψ̄

)
≡ HI . (4.24)

The requirement of invariance under such transformations can be shown to be equivalent to the
following nonlinear equation on H [13]:

HI gIJ̄ −
1

2
HKHLRKJ̄LI ΨI = Ψ̄J̄ . (4.25)

This equation also follows directly from (3.7) using the definition of the Ψ’s, or, as a consequence
of the superspace Legendre transform.
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The closed form expression ofH for any Hermitian symmetric space was obtained as a solution
of (4.25), which is given by [14]

H(Φ, Φ̄,Ψ, Ψ̄) =
1

2
ΨTg−1F(−RΨ,Ψ̄)Ψ , (4.26)

where

Ψ =

(
ΨI

Ψ̄Ī

)
, g−1 =

(
0 gIJ̄

gĪJ 0

)
, (4.27)

RΨ,Ψ̄ =

(
0 (RΨ) J̄

I

(RΨ̄) J
Ī

0

)
=

(
0 1

2R
KJ̄L
I ΨKΨL

1
2R

K̄JL̄
Ī

Ψ̄K̄Ψ̄L̄ 0

)
, (4.28)

and

F(x) =
1

x

[√
1 + 4x− 1− ln

(
1 +
√

1 + 4x

2

)]
. (4.29)

We rewrite (4.26) to a convenient form for our purpose. In a similar way to the tangent
bundle case, we introduce the following differential operators

RΨ,Ψ̄ = −(RΨ) J̄
I Ψ̄J̄

∂

∂ΨI
, R̄Ψ,Ψ̄ = −(RΨ̄) J

Ī ΨJ
∂

∂Ψ̄Ī

. (4.30)

They satisfy
RΨ,Ψ̄H(n) = R̄Ψ,Ψ̄H(n). (4.31)

Performing the Taylor expansion for (4.26), we have

H =
∞∑
n=1

cnG
(n) , cn =

(−1)n−1F (n−1)(0)

(n− 1)!
, (4.32)

where the terms G(n) are given by

G(2k+2) = ΨIg
IJ̄
((
RΨ̄RΨ

)k) K̄

J̄
(RΨ̄) L

K̄ ΨL , k = 0, 1, 2 . . . (4.33)

G(2k+1) = ΨIg
IJ̄
((
RΨ̄RΨ

)k) K̄

J̄
Ψ̄K̄ , k = 0, 1, 2 . . . (4.34)

and satisfy following relations

ΨI
∂

∂ΨI
G(n) = Ψ̄Ī

∂

∂Ψ̄Ī

G(n) = nG(n) , (4.35)

∂

∂ΨI
G(2k+2) = (2k + 2)gIJ̄

((
RΨ̄RΨ

)k) K̄

J̄
(RΨ̄) L

K̄ ΨL , (4.36)

∂

∂ΨI
G(2k+1) = (2k + 1)gIJ̄

((
RΨ̄RΨ

)k) K̄

J̄
Ψ̄K̄ . (4.37)

By using the above identities, one can show

G(n+1) =
(−RΨ,Ψ̄)n

n!
|Ψ|2 , |Ψ|2 := gIJ̄ΨIΨ̄J̄ . (4.38)
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poles of eξRΨ,Ψ̄ |Ψ|2

C
>

Figure 1. The contour of integration in eq. (4.42).

Putting together (4.32) and (4.38) we find

H =
∞∑
n=0

F (n)(0)

n!

Rn
Ψ,Ψ̄

n!
|Ψ|2 . (4.39)

Now we use of the formula,
xn

n!
=

∮
C

dξ

2πi

eξx

ξn+1
, (4.40)

where, at this point, contour C can be any closed loop containing the origin with positive
(counterclockwise) orientation. Using this identity we obtain

H =
∞∑
n=0

F (n)(0)

n!

∮
C

dξ

2πi

eξRΨ,Ψ̄

ξn+1
|Ψ|2 , (4.41)

where now the contour C must be chosen such that it lies in the region where the factor eξRΨ,Ψ̄ |Ψ|2
is analytic. With this in mind we can rewrite eq. (4.41) as

H =

∮
C

dξ

2πi

F(1/ξ)

ξ
eξRΨ,Ψ̄ |Ψ|2 . (4.42)

The function F(1/ξ)/ξ gives a branch cut between −4 and 0. Therefore, the contour has to be
chosen so that it does not cross the branch cut because the H is real and regular. Combining
both requirements we see that the contour C in addition to avoiding the branch cut must be
also bounded by the poles of the factor eξRΨ,Ψ̄ |Ψ|2 (see fig. 1). In the subsequent section, we
derive the tangent bundle as well as the cotangent bundle over E7/[E6 × U(1)] by using (3.21)
and (4.42).

5. The compact Hermitian symmetric space E7/(E6 × U(1))
Locally, the compact Hermitian symmetric space E7/(E6×U(1)) can be described by complex

variables Φi transforming in the 27 representation of the E6 and their conjugates [17, 18].

Φi , Φ̄i := (Φi)∗ , i = 1, . . . , 27 . (5.1)
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The Kähler potential is

K(Φ, Φ̄) = ln

(
1 + ΦiΦ̄i +

1

4
|ΓijkΦjΦk|2 +

1

36
|ΓijkΦiΦjΦk|2

)
. (5.2)

Here we have used the notation, |ΓijkΦjΦk|2 = (ΓijkΦ
jΦk)(ΓilmΦ̄lΦ̄m) and |ΓijkΦiΦjΦk|2 =

(ΓijkΦ
iΦjΦk)(ΓlmnΦ̄lΦ̄mΦ̄n) , where Γijk is a rank-3 symmetric tensor covariant under the E6.

Its complex conjugate is denoted by Γijk.
Products of these tensors satisfy an identity [19]

ΓijkΓ
ijl = 10δlk . (5.3)

And

Γijk

(
ΓilmΓjnp + ΓilpΓjnm + ΓilnΓjmp

)
= δlkΓ

mnp + δpkΓmnl + δnkΓmlp + δmk Γlnp , (5.4)

which is called the Springer relation [20].
Let us calculate the tangent bundle Lagrangian by using (3.21). In our notation, the first-

order differential operator defined in (3.12) is given by

RΣ,Σ̄ = −1

2
ΣiΣ̄jΣ

kR j l
i k (g−1) m

l

∂

∂Σm
, (5.5)

where (g−1) j
i = (g i

j )−1 is the inverse metric of g j
i , that is g k

i (g−1) j
k = δ j

i . Since we are
considering a symmetric space, it is actually sufficient to carry out the calculations at a particular
point, say at Φ = 0. The Riemann tensor at Φ = 0 is given as

R j l
i k

∣∣∣
Φ=0

= ∂k∂
lg j
i − (g−1) n

m ∂ng
j
i ∂

mg l
k

∣∣∣
Φ=0

= −δ j
i δ

l
k + ΓmikΓ

mlj − δ j
k δ

l
i . (5.6)

Substituting this into (5.5), we have

RΣ,Σ̄ = xD − 1

2
y∂x −

1

3
z∂y , D := x∂x + y∂y + z∂z , (5.7)

where we have used (5.4) and invariant quantities under the E6 action

x := ΣiΣ̄i , (5.8)

y := (ΓijkΣ
jΣk)(ΓilmΣ̄lΣ̄m) , (5.9)

z := (ΓijkΣ
iΣjΣk)(ΓlmnΣ̄lΣ̄mΣ̄n) . (5.10)

Using the Baker-Campbell-Hausdorff expansion formula, one can show, that

etRΣ,Σ̄ = etxDe−
t
2
y∂xe−

t
3
z∂ye

t2

12
z∂xe−

t2

4
yDe−

t3

18
zD . (5.11)

By straight-forward application of each exponential we obtain

etRΣ,Σ̄x = −∂t ln Ω(t;x, y, z) , Ω(t;x, y, z) := 1− tx+
t2

4
y − t3

36
z . (5.12)

Plugging (5.12) into (3.21) we get the tangent bundle action at Φ = 0.

L = ln
(

1− x+
1

4
y − 1

36
z
)
. (5.13)
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This result can be extended to an arbitrary point Φ of the base manifold by replacing

x→ g j
i ΣiΣ̄j , (5.14)

1

4
y → 1

2
(g j
i ΣiΣ̄j)

2 +
1

4
R j l
i k ΣiΣ̄jΣ

kΣ̄l , (5.15)

− 1

36
z → −1

6
(g j
i ΣiΣ̄j)

3 − 1

4
(g j
i ΣiΣ̄j)(R

m n
k l ΣkΣ̄mΣlΣ̄n)

− 1

12
|g j
i R

k m
j l Σ̄kΣ

lΣ̄m|2 . (5.16)

Let us turn to the cotangent bundle action. Again we restrict the calculations to the origin
of the base manifold Φ = 0. Defining E6 invariant quantities in terms of the cotangent vector

x̃ := ΨiΨ̄
i , (5.17)

ỹ := (ΓijkΨjΨk)(ΓilmΨ̄lΨ̄m) , (5.18)

z̃ := (ΓijkΨiΨjΨk)(ΓlmnΨ̄lΨ̄mΨ̄n) , (5.19)

we obtain the differential operator (4.30) of the form

RΨ,Ψ̄ = x̃D̃ − 1

2
ỹ∂x̃ −

1

3
z̃∂ỹ , D̃ := x̃∂x̃ + ỹ∂ỹ + z̃∂z̃ . (5.20)

Repeating the same calculation as below (5.11), we find

eξRΨ,Ψ̄ x̃ = −∂ξ ln Ω(ξ; x̃, ỹ, z̃) , (5.21)

where the function Ω is given in (5.12). Eq. (4.42) with the above leads to

H = −
∮
C

dξ

2πi

F(1/ξ)

ξ

−x̃+ ξ
2 ỹ −

ξ2

12 z̃

1− ξx̃+ ξ2

4 ỹ −
ξ3

36 z̃
. (5.22)

Note that the factor in (4.41) eξRΨ,Ψ̄ |Ψ|2 produces poles, given by the roots of the cubic equation:

1− ξx+
ξ2

4
y − ξ3

36
z =

z

36
(ξ1 − ξ)(ξ2 − ξ)(ξ3 − ξ) = 0 . (5.23)

By construction, these poles are not inside the contour which only encircles the branch cut
between the origin ξ = 0 and ξ = −4. Since the function F(1/ξ)/ξ has no singularity at infinity
in the ξ-plane, the contour can be equivalently respected as encircling the poles ξ1, ξ2 and ξ3 in
the opposite direction. Thus, we can apply the Residue theorem, picking additional minus sign
from the orientation of contour (which kills another minus given by eq. (5.21)) to obtain

H =
F(1/ξ1)

ξ1
+
F(1/ξ2)

ξ2
+
F(1/ξ3)

ξ3
. (5.24)
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The explicit form of ξ1, ξ2 and ξ3 are given by

ξ1 =
3ỹ

z̃
+

21/3(−81ỹ2 + 108x̃z̃)

3z̃(−1458ỹ3 + 2916x̃ỹz̃ − 972z̃2 +A)1/3

− (−1458ỹ3 + 2916x̃ỹz̃ − 972z̃2 +A)1/3

3 · 21/3z̃
, (5.25)

ξ2 =
3ỹ

z̃
− (1 + i

√
3)(−81ỹ2 + 108x̃z̃)

3 · 22/3z̃(−1458ỹ3 + 2916x̃ỹz̃ − 972z̃2 +A1/3)

+
1− i

√
3

6 · 21/3z̃
(−1458ỹ3 + 2916x̃ỹz̃ − 972z̃2 +A1/3), (5.26)

ξ3 =
3ỹ

z̃
− (1− i

√
3)(−81ỹ2 + 108x̃z̃)

3 · 22/3z̃(−1458ỹ3 + 2916x̃ỹz̃ − 972z̃2 +A1/3)

+
1 + i

√
3

6 · 21/3z̃
(−1458ỹ3 + 2916x̃ỹz̃ − 972z̃2 +A1/3), (5.27)

where A =
√

4(−81ỹ2 + 108x̃z̃)3 + (−1458ỹ3 + 2916x̃ỹz̃ − 972z̃2)2. The result at an arbitrary
point of Φ can be obtained by the following replacements

x̃→ (g−1) j
i ΨjΨ̄

i , (5.28)

1

4
ỹ → 1

2
((g−1) j

i ΨjΨ̄
i)2 +

1

4
R̃ j l
i k Ψ̄iΨjΨ̄

kΨl , (5.29)

− 1

36
z̃ → −1

6
((g−1) j

i ΨjΨ̄
j)3 − 1

4
((g−1) j

i ΨjΨ̄
i)(R̃ l n

k m Ψ̄kΨlΨ̄
mΨn)

− 1

12
|(g−1) j

i R̃
k m
j l ΨkΨ̄

lΨm|2 , (5.30)

where R̃ j l
i k = (g−1) m

i (g−1) j
n (g−1) p

k (g−1) l
q R

n q
m p .

6. Generalization
Our reformulation suggests an alternative expression for the cotangent bundle over any

compact Hermitian symmetric space. In order to explain it, let us look at the equation (5.22).
We can rewrite it as follows

H = −
∮
C

dξ

2πi

F(1/ξ)

ξ
∂ξ ln Ω(ξ; x̃, ỹ, z̃) . (6.31)

It is easy to see that Ω is related to the Kähler potential K(Φ, Φ̄) by uniform rescaling of
coordinates

ln Ω(ξ; x̃, ỹ, z̃) = K(Φ→ −
√
ξΨ, Φ̄→

√
ξΨ̄) := Kξ(Ψ, Ψ̄) . (6.32)

Thus, we see that the cotangent bundle action for any Hermitian symmetric space is given by

H = −
∮
C

dξ

2πi

F(1/ξ)

ξ
∂ξKξ(Ψ, Ψ̄) , (6.33)

where, as in the E7/(E6 × U(1)) case, the contour C must encircle the branch cut of F(1/ξ)/ξ
and it must be bounded by the poles of ∂ξKξ, in the same manner as depicted in fig. 1. Since
for all Hermitian symmetric spaces the Ω is a finite-order polynomial in ξ, we may write

Ω ∼ Πi

(
ξ − ξi(Ψ, Ψ̄)

)
, (6.34)
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where ξi are the solutions of characteristic equation Ω = 0. Since we are interested in (derivative
of) logarithm of the above quantity, the constant of proportionality is actually not important.
Thus, we are led to

∂ξKξ =
∑
ξ

1

ξ − ξi
. (6.35)

Substituting this back into (6.33) and using the Residue theorem, we arrive at

H = −
∑
i

∮
C

dξ

2πi

F(1/ξ)

ξ

1

ξ − ξi
=
∑
i

F(1/ξi)

ξi
, (6.36)

where minus sing is absorbed because the contour C encircles poles in the clockwise direction.
We checked that the results obtained by this formula for all the compact Hermitian symmetric
spaces perfectly coincide with the previous results in [9, 10, 12, 13].

7. Conclusions
In this proceeding we have reviewed how to construct the closed formulas for tangent and

cotangent bundle action over the compact Hermitian symmetric space E7/(E6×U(1)), starting
from the result in [14]. This particular case allowed us to establish the correspondence between a
cotangent bundle action and poles of derivatives of the Kähler potential under uniform rescaling
of coordinates. Based on this correspondence we have present a general formula for a cotangent
bundle action for any compact Hermitian symmetric space in Eq. (6.36). In the former methods
in [9, 10, 12, 13], the Legendre transform is used to obtain a cotangent bundle action. This
procedure, although in principle applicable to the E7/(E6×U(1)) case, is not straightforward and
one often must find a suitable ansatz to solve involved algebraic equations. Our simple formulae
of the cotangent bundle action obtained from the result in [14] avoids such a complication and
clearly demonstrates the reduction of work in constructing of a cotangent bundle action.
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