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Abstract. The ¢-conformal Galilei algebra, denoted by g,(d), is a particular non-semisimple
Lie algebra specified by a positive integer d and a spin value £. The algebra g,(d) admits central
extensions. We study lowest weight representations, in particular Verma modules, of g.(d)
with the central extensions for d = 1,2. We give a classification of irreducible modules over
d = 1 algebras and a condition of the Verma modules over d = 2 algebras being reducible.
As an application of the representation theory, hierarchies of differential equations are derived.
The Lie group generated by g,(d) with the central extension is a kinematical symmetry of the
differential equations.

1. Introduction
By /-conformal Galilei algebra we mean a particular class of non-semisimple Lie algebras. Each
Lie algebra in the class is specified by a pair of numbers (d, ). The possible values of d and ¢

are given by
1 3

d=1,23, ..., =1, -,

2 2

The Lie algebra specified by a given pair (d, #) has the generators

2, ...

D, H, C, M; = —M;, P, ij=12..,d n=01,--,2

)

and the generators satisfy the following nonvanishing commutation relations:

ID,H]=2H, [D,C]=-2C, [C,H]=

[M;, Mké] = _5zk:Mjé OjeMig + 630 Mjg + 055 My,
[H, ") = —nP" Y, D, P =2(£ = n)P™, (1)
C

P ] (20— nm) P, My, PM) = —6u P + 65, P,

This Lie algebra was introduced as a nonrelativistic conformal algebra in [1, 2]. Indeed one
may see that it has the subalgebra (D, H,C) ~ sl(2,R) ~ so(2,1) which is the conformal

algebra in (14 1) dimensional spacetime. The commutative subalgebra (Pi(n)) carries the spin /
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representation of s/(2, R) subalgebra and the vector representation of so(d) subalgebra generated
by M;;. The parameter d indicates the dimension of space on which the generators act as
infinitesimal transformations of the spacetime when a particular realization is considered. We
denote the algebra specified by (d,£) by ge(d).

It is known that g;(d) has two distinct type of central extensions according to the values of
dand £ :
(i) mass extension existing for any d and £ € Z~o + 3
[P, PO = 635 6ot InM, Ty = (=1)"3 (20 — m)tml. (2)

)

(ii) exotic extension existing only for d = 2 and £ € Z+

[P PM] = € Sminpe In®,  Im = (—1)™(20 — m)!ml, (3)

where ¢€;; is the antisymmetric tensor with €;2 = 1. Simple explanation of the existence of two
distinct central extensions is found in [9]. The Schriodinger algebra considered by Niederer
corresponds to gy /9(d) with the mass central extension [3]. The exotic extension was first found
for £ =1 in the study of classical mechanics having higher order time derivatives [10, 11, 12].

The purpose of the present work is to develop a representation theory of g,(d) with the central
extensions for d = 1, 2. Namely, we shall investigate representations of g,(2) for all possible values
of £ but those of gy(1) for half-integer values of £. As an application of the representation theory
we derive partial differential equations which have kinematical invariance of the group generated
by g¢(d). The choice of particular values of d is motivated by the observation that gy(d) has more
complicated structure for d > 2 as the spatial rotation becomes non-abelian. There are a couple
of reasons of focusing on the central extensions: as shown in [5], in the case of g1 /5(1) without the
mass central extension, the representation theory is more involved and the resulting differential
equations are not of physical importance. In many physical applications of gy(d) the central
extensions play an important roles (see for example [11, 13, 14]).

The present work is an extension of the previous works [5, 6, 7, 8, 16]. In [5, 6] a classification
of the irreducible lowest weight representations of g;/5(d) (d = 1,2, 3) and differential equations
having kinematical symmetries generated by the algebras are given. Such differential equations
for g1/2(d) with any d have been obtained in [7, 8]. On the other hand [16] classifies the
irreducible highest weight representations of g;(2) with the exotic central extension. All those
works show that one may apply the techniques such as Verma modules, singular vectors to
investigate irreducible representations of gy;(d). They also showed that differential equations
having the group generated by g,(d) as kinematical symmetry may be obtained by the method
developed for semisimple Lie groups [4].

We organize this paper as follows. In the next section we provide an explicit formula of
singular vectors in the Verma modules over gy(1) with the mass central extension. This is used
to give a classification of irreducible lowest weight modules of the algebras. We then employ the
method of [4] to derive differential equations, such that kinematical symmetries of the equations
are given by the Lie group generated by gy(1) with the mass central extension. In §3 we study
reducibility of Verma modules over g,(2) with the mass or the exotic central extensions by
explicit construction of singular vectors. By the result we derive differential equations having
kinematical symmetries generated by gp(2) with the central extensions. We close the paper with
some remarks in §4.

2. Representation theory of d = 1 conformal Galilei algebra and invariant equations
2.1. Classification of irreducible representations

We start our investigations with gy(1) with the mass central extension, i.e., £ being a positive
half-integer. The algebra, denoted simply by g, has no generators of spatial rotations and
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does not need an index for space coordinates. Namely, one may write the generators of g as
D,H,C,P™ M with n = 0,1,...,2(. Their nonvanishing commutators are given by (1) and
(2). Our aim in this subsection is to give a classification of the lowest weight modules of g. This
will be done by a way analogous to the case of semisimple Lie algebras. That is, we introduce
the Verma module over g which is in a sense the largest lowest weight module for a given set of
lowest weights. Then use the theorem that any lowest weight module over g with the same set
of lowest weight is isomorphic to a quotient of the Verma module [15].
To define the Verma modules we make the following vector space decomposition of g :

gt = (H, p(U),p(l),...,p(’?—%) ),
go = ( D, M >a (4)
g~ = (C, Py plt3) ... phy,

Then one may see that [g°, g¥] C gF, that is, this is analogues to the triangular decomposition
of semisimple Lie algebras. Suppose that there exists a lowest weight vector defined by

D6, p) = =610, ), M6, pu) = —p |6, 1),
X|6,u) =0, "Xeg” (5)

A Verma module V% over g with the lowest weights (—d, —u) is defined by Vo* = U(g*) |8, u)
where U(gT) is the universal enveloping algebra of g*. More precisely, one may defined Vo as
the vector space with the following basis:

1
=3

ks
V(s’“: HhHPEi%—j|6’M> hakOakla"'?ké—% EZZO : (6)
§=0

The vector space V% carries a representation of g specified by the lowest weights (—d, —u).
In general, the representation is not irreducible (reducible). Reducibility of V% is detected
by singular vectors. A singular vector |v,) is a vector having the same property as |d, ) but
different eigenvalues. If the Verma module has a singular vector, then the representation is
reducible, since the space I%* = U(g") |v,) is obviously an invariant subspace of V%, To obtain
an irreducible module we consider a quotient module V% /I% If the quotient module has no
singular vectors then the quotient module is irreducible. If the module has singular vectors we
take a quotient again and repeat the same procedure until we have an irreducible module. In
this way one may arrive at a complete classification of irreducible lowest weight modules over g.
Here we give only the results of this procedure. One may find the proofs in [17] (In [17] highest
weight Verma modules are considered. It is easy to convert it to the lowest weight modules).
Proposition 1 If20 —2(q— 1)+ (£ + )2 =0 q € Z>o and pu # 0, then VO has precisely one
singular vector:

[vg) = 8710}, S =2((£~ §))’uH + (P2 (7)
Namely, |v,) satisfies the relations:
Dlvg) = (29 = 0) [vg), M |vg) = —pilvg),
Xvg) =0, "Xeg" (8)

Theorem 2 The irreducible lowest weight modules of d = 1 ¢-CGA with the mass central
extension are listed as follows (pu # 0) :

o VOl if 26 —2(q—1)+ (L +1)2#£0,
o VOR/IM if 25 —2(q—1)+ (£ + )2 =0,

where 1% = U(g*) [vg) and q € Z~g. All modules are infinite dimensional.
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2.2. Kinematically invariant differential equations

In this subsection we derive differential equations invariant under the group generated by g.
Here the invariance means the kinematical symmetry in the sense of [3]. This is done by the
method developed for real connected semisimple Lie groups [4]. We first summarize the recipe
for deriving such differential equations.

Let g be a Lie algebra and G = exp(g) be the group generated by g. Suppose that g admits a
triangular-like decomposition such as (4): g = gt @ g’ @ g=. Then the Lie group G also has the
corresponding decomposition: G = Gt*G’G~ where G* = exp(g*) and G® = exp(g°). Consider a
Verma module V* over g with the lowest weight vector |0) and the lowest weight A :

VA =U(gh)|0), (9)
X [0) =0, Xeg,
X[0)=AX)0), Xeg

We assume that the Verma module has a singular vector |vs) = P |0),P € U(g™).
Consider a C'° function on G having the property of right covariance:

flag’97) ="M f(g), YgeG V" =eXec’ Ygm eG” (10)
Thus the function f(g) is actually a function on the coset G/G°G™. Now consider the space C*

of right covariant functions on G. We introduce the right action of g on C* by the standard
formula: p
mr(X)f(9) = ——f(ge™)| , X €g g€G (11)
T 7=0
Then it is immediate to verify by the right covariance (10) that f(g) has the properties of lowest
weight vector:

Tr(X)f(9) =0, Xecg
mr(X)f(9) = AX)f(9), Xeg (12)

Thus one may have a realization of the Verma module V* in terms of C*.
One may consider the left regular representation of G on C* defined by

A _
(T*9)f)g) = Flg™'9). (13)
We remark that we take the same lowest weights for g and G. Recalling that a singular vector
induces an another lowest weight representation with the different lowest weight A’, it is not
difficult to see that the singular vector in the representation wg gives an intertwining operator
of two representations of G :

mr(P)TY = TN 1R (P). (14)
As will be seen later mr(P) is, in general, a differential operator. If mr(P) has a kernel, i.e.,
mr(P)Y =0, (15)

then we have a differential equation. Furthermore the solution ¢ to the differential equation
(15) is transformed to another solution by the left action of G because of the relation (14). Thus
equation (15) is the desired equation.

Now we apply the recipe to g, i.e., go(1) with the mass central extension. Parameterizing

_1 .
an element of G = exp(g*) as ¢g* = exp(tH + Zﬁ:ﬁ 2;PU)) the right action of H and P®*)
becomes differential operators:

I = w0
Tr(H) = Fri Zﬂj—amj,l’ Tr(PY) = e (16)
=1

By (7) and (15) we have proved the following:
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Proposition 3 The Lie group generated by g is a kinematical symmetry of the following
hierarchy of partial differential equations:

L q
0 . 0 02
azlﬁ(& + ;]Ij a$j1) + 321«#% P(t,z;) =0, q € Z>o (17)

where ay = 2((¢ —

1
2/°

For ¢ = 1/2 (17) recovers a hierarchy of heat/Schrodinger equations in one space dimension
8]:

obtained in [5, 7,
o o2 q

The central charge p is interpreted as (imaginary) mass. For higher values of £ we observe an
interesting deviation from the heat/Schrodinger equation and the obtained equations are highly
nontrivial. As an illustration we show the hierarchy of equations for £ = 3/2 and 5/2 :

0 0 92\
<2 <8t+m18 ) > Y(t,zo,21) =0, £=3/2

Ox?
0 0 o 9?2\ ¢
(8“<3t+”‘13 +2$23x1) +a—$§> P(t, 20, 71,72) =0, £=15/2

3. Representation theory of d = 2 conformal Galilei algebra and invariant equations
In this section we study g,(2) with the mass or the exotic central extensions. We give a condition
for reducibility of Verma modules and differential equations having kinematical invariance. Here
we present our main results without proofs. The proofs and other details are found in the
separate publication [18].

3.1. Mass central extension
The algebra gy(2) with the mass central extension, we denote it simply by g, has the following
generators:

D, H, C, My, P™, M,  i,j=1,2, n=0,1,---,2

)

where £ is a positive half-integer. We make the following changes of generators:
P =pm ip™ T =—iMy,, M =2M, (18)

then their nonvanishing commutators are given by

D, H] = 2H, [D,C] = —2C, [C,H] =
(H, PV = —n P Y, (D, PV =2(¢ — n) P,

[c Pi ] (2 — )Pi"“% [, PV = £P, (19)
[ ] = dmtn,20 Im M,

where I,,, is given by (2). We introduce a vector space decomposition of § :

n 1
g—'_:(H? Pi)% nzoala"'7€_§
'=(D, J M), (20)
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This corresponds to the triangular decomposition of semisimple Lie algebras.
Suppose the existence of the lowest weight vector |0,r, u) defined by

D|57T7:u‘>:_5|57’rau’>7 J|5,’)”,[1;>:—T'|5,’)”,ﬂ>,
M |§,r,p) = —p|8,r,p) s X [8,7,1) =0, VX € §” (21)

One may build a Verma module V%™# on |3, r, 1) whose basis is given by

e}
HE TPy (PO 18,0, 1) (22)
n=0
where k, ap,b, (n =0,1,...,0 — %) are non-negative integers. The Verma module V%™ is not

always irreducible as indicated in the following proposition.

Proposition 4 The Verma module VO™* has a singular vector if § —q + (£ + %)2 +1=0 fora
positive integer q. It is given by

1 1 1 2
lvg) = (aent + PL P50 0y oy = ((€_§>!> (23)
and satisfies the relations
Dlvg) = (2 = 06)|vg),  Jlvg) = =rlvg), M lvg) = —plvg), (24)
Xl =0, "Xeg
The existence of the singular vectors (24) allows us to derive differential equations such

that their kinematical symmetry is given by the Lie group exp(§) as was done in §2.2. Let us
parametrize an element g € exp(§™) as

1
3

g =exp(tH)exp | Y (@, P +5,P™) | | (25)
n=0

then the right action of elements in g on a right covariant function f(g) with g € exp(g)
becomes differential operators:

0 0
H)= — n n 3
mr(H) ot +n:1n (m 9z + 3yn1>
rr(PM) = 5 (P! N = I (26)

By this and Proposition 4 we have prove the following:
Proposition 5 The Lie group generated by § is a kinematical symmetry of the following
hierarchy of partial diﬁerential equations:

q

0 0?
n t,zi,y;) =0, 2
ap +Z ( azn1+yayn1> Fow oy | VT =0 @D

where q € Zyp.
For ¢ = 1/2 (27) yields the following form:

o 32 q

By an appropriate change of variables, this recovers a hierarchy of heat/Schrédinger equations
in two space dimension obtained in [6, 7, 8].
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3.2. Exotic central extension
We denote gy(2) with the exotic central extension by §. It has the generators

_D7 H7 07 M127 P(n)’e, 'L,] — ]_,2’ n:ojl,...’2€

)

where / is a positive integer. We denote the central element of § by © to make clear the difference
from the case of §. We redefined the generators as

P = PM +iP{M, = —iMy, O =-2i8, (28)

then the nonvanishing commutators of § are identical to (19) except the central extension. The
central extension for § in terms of new generators is given by

[Pim)apézn)] = :l:(sm—l—n,%-[m@ (29)

with I, defined in (3).
We make a triangular like decomposition of § :
g+ (Hv P-g)? P:E:n)>? nzoala"'ae_l
i°=(D, J ©), (30)
g_ (Ca PEZ)& Pin)% n:€+1,€+2,,2€

The lowest weight vector |0,r,6) is defined as usual:

D|57T79>:_5|57T70>7 J|57T79>:_’r|57r79>7
©10,r,60) = 01d,r,6) , X |6,r,0) =0 for "X € §~. (31)

We construct a Verma module VO™ over § by repeated applications of an element of §+ on
6,7,0) . A basis of Vo7 is given by

l—1
V4 a n)\an n n
MOy TP ) 16,r, ), (32)
n=0
where h,a, (n = 0,1,...,£),b, (n = 0,1,...,¢ — 1) are non-negative integers. The Verma

module V%™ is not always irreducible as g or g.

Proposition 6 The Verma module VO™ has a singular vector if § —q+0({+1) +1 =0 for a
positive integer q. It is given by

l0g) = (0H + (~1)'PL VPN 5 . 6), ap =010 - 1)! (33)
and satisfies the relations

Dlvg) = (29— 0)[vg), Jlvg) = —7lvg), ©Olvg) =01vg),
Xlvg) =0, "Xeg (34)
This generalize the result for £ = 1 investigated in [16].

Now let us derive differential equations having kinematical symmetries generated by §. We
parametrize an element g € exp(§™) as

/-1
g = e exp <Z(an_$_") +y, P™) + xgpf)> . (35)

n=0
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Then the right action of elements in §* on a right covariant function f(g) with g € exp(§)
becomes differential operators:

5 = 5 2 3
Tr(H) = 9t + HZO(” + 1)$n+18—xn + 7;)(” + 1)yn+la—yn7
7rbz(PJ(r)): ErE nr(P" )):w- (36)

By this and Proposition 6 we have prove the following:

Proposition 7 The Lie group generated by § is a kinematical symmetry of the following
hierarchy of partial differential equations:

9 & = P 2 |
- _ R —_ 47 =
[0{@9 ( o —|—nzln$n o —l—;nyn 8%1) +(-1) o 8@] =0, (37)
where q¢ € Zyp.

4. Concluding remarks

We have studied the lowest weight representations of /-conformal Galilei algebras with central
extensions for d = 1, 2. For d = 1 algebras we gave a classification of all irreducible lowest weight
modules, however, the result for d = 2 algebras is partial in the sense that a full classification of
irreducible modules has not been done yet. In fact, our knowledge on irreducible modules of g,(d)
is very limited. We summarize in Table 1 the works on lowest (highest) weight representations
of gy(d) have been done so far. In Table 1 ‘full classification’ lists the algebras for which a
classification of irreducible lowest (highest) weight modules has been given. On the other hand
‘partial result’ means that it has been shown that some Verma modules are reducible because
of the existence of singular vectors, but reducibility of other Verma modules are still open. The
algebras are indicated by a pair (d, £). Recalling that d takes any positive integers and ¢ takes any

Table 1. Works on irreducible modules of g,(d).

full classification partial result
(Lany half-integer) (2,6 > 2)
(2,3) (d>4,3)
(2,1)

(3,3)

spin values, one can see that, what has been done so far is very little compared with the whole
family of g;(d). There are many things to be done in order to achieve a complete classification of
irreducible modules of gy(d). However the method of the classification employed in [5, 6, 16, 17],
which is useful for lower values of d, will not be efficient for higher values of d. We need to
develop an alternate method.

In the present work we also discuss differential equations having kinematical symmetries
generated by g¢(d). The differential equations for £ = 1/2 are a hierarchy of free Schrodinger
equations. However physical implication of other equations is still an open problem. Because
of the method of construction, we obtained linear differential equations having kinematical
symmetries. It may be interesting to consider differential equations having full Lie symmetries
generated by gy(d) along the line of [19, 20, 21, 22, 23].
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