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Abstract. Algebraic-rational nature of the four-dimensional, F4-invariant integrable
quantum Hamiltonians, both rational and trigonometric, is revealed and reviewed. It was
shown that being written in F4 Weyl invariants, polynomial and exponential, respectively,
both similarity-transformed Hamiltonians are in algebraic form, they are quite similar
the second order differential operators with polynomial coefficients; the flat metric in
the Laplace-Beltrami operator has polynomial (in invariants) matrix elements. Their
potentials are calculated for the first time: they are meromorphic (rational) functions with
singularities at the boundaries of the configuration space. Ground state eigenfunctions
are algebraic functions in a form of polynomials in some degrees. Both Hamiltonians
preserve the same infinite flag of polynomial spaces with characteristic vector (1, 2, 2, 3),
it manifests exact solvability. A particular integral common for both models is derived.
The first polynomial eigenfunctions are presented explicitly.

1. Introduction
In four dimensional Euclidian space there exist several remarkable completely integrable
quantum systems originally discovered in the Hamiltonian reduction method (for a review,
see [1]). These are particular cases of the Calogero-Moser-Sutherland systems and all of
them are characterized by a discrete symmetry given by Weyl group W , acting on root
spaces A4, BC4, F4 and H4. In such models, the potential has four possible forms (rational
(∼ 1/x2), trigonometric (∼ 1/(sinx)2), hyperbolic (∼ 1/(sinhx)2) and elliptic (∼ ℘(x))).
All these 4D Hamiltonians are exactly solvable in terms of Weyl-invariant variables. For
rational and trigonometric (also hyperbolic) systems, exact solvability was obtained in an
explicit constructive fashion in [2, 3, 4, 5]. The spectrum is found explicitly, in closed
analytic form being a first/second degree polynomial in the quantum numbers for the
rational/trigonometric systems respectively.
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The purpose of the present paper is to revisit the F4-invariant model in its rational and
trigonometric forms showing how it looks like in the space of orbits, in the space of F4

invariants. For the rational F4 model it is mainly reduced to a review the results obtained
in previous studies [4] (see also [6]) and their reinterpretation. In addition, we show for
the first time the explicit form of the ground state eigenfunction and the original potential
in terms of Weyl invariant variables. For the F4 trigonometric model we present a more
succinct solution compared to our previous analysis [4] (see also [7]), and we also present for
the first time the explicit form of the ground state eigenfunction and the original potential
in terms of trigonometric Weyl invariant variables. For both F4 rational and trigonometric
models the extra, particular integral [8] will be derived and it will be shown that is the
same in the space-of-orbits. Eventually, it will be given a place to both models in the
space-of-orbit formalism [9, 10].

2. Generalities

The F4-Weyl-invariant Calogero-Moser-Sutherland Hamiltonian is defined as follows

H = −1

2

N∑
j=1

∂2

∂x2j
+

1

2

∑
α∈F4

+

g|α||α|2 V((α · x)) , (1)

where F4
+ is the set of positive roots, N = 4 is the rank of the root system (the dimension

of the configuration space), and g|α| are coupling constants. For roots of the same length
the same coupling constant g|α| is assigned. In (1) x denotes the (N = 4)-dimensional
vector x = (x1, x2, x3, x4). The potential consists of a linear superposition of the terms
V((α ·x)) of the argument (α ·x) where α ∈ F4

+ is a positive root (see [1]). For the rational
case the four-dimensional isotropic harmonic oscillator potential is usually added to the
Hamiltonian (1).

The set F4
+ consists of 24 positive roots:

αshort = e1, e2, e3, e4,
1
2(e1 ± e2 ± e3 ± e4) , |αshort| = 1 ,

αlong = ei ± ej , i > j i, j = 1, . . . 4 , |αlong| =
√
2 ,

(2)

where e1, e2, e3, e4 are the standard orthonormal vectors in the 4-dimensional Euclidean
space. From a geometrical viewpoint, the short root vectors in (2) are, in fact, the vertices
of the 4-dimensional 24-cell regular polytope (see [11]), while the long roots are the vertices
of its dual 24-cell. The rotational symmetry group of the 24-cell has the order 576. The
full symmetry group of the 24-cell is the F4 Weyl group (of order 1152), which is generated
by reflections on the hyperplanes orthogonal to the F4 roots.
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3. F4 Rational Model

In a four-dimensional Euclidean space with coordinates x = (x1, x2, x3, x4) the Hamiltonian
of the F4 Rational Model is given by

Hrat
F4

=
1

2

4∑
i=1

(−∂2
xi
+ ω2 x2i

)
+ g�

4∑
j<i=1

[
1

(xi + xj)2
+

1

(xi − xj)2

]
(3)

+
gs
2

4∑
i=1

1

x2i
+ 2gs

∑
ν′s=0,1

1

[x1 + (−)ν2x2 + (−)ν3x3 + (−)ν4x4]
2 ,

with
∑

ν ′s = even. The parameters g�, gs are coupling constants associated with long
and short roots respectively, and ω is the frequency of 4D-isotropic harmonic oscillator
potential. The configuration space is the F4-Weyl Chamber.

The ground state eigenfunction of the Hamiltonian (3) has the form

ψ0(x) = (Δ+Δ−)ν(ΔΔ0)
μ e−

1
2
ω
∑4

i=1 x
2
i . (4)

where

Δ+Δ− =

4∏
i<j=1

(xi ± xj) , ΔΔ0 =
1

256

4∏
i=1

xi(x1 ± x2 ± x3 ± x4) , (5)

are generalized Vandermonde determinants. The exponents ν, μ of the ground state
eigenfunction (4) are connected to the coupling constants g� , gs by the relations

g� = ν(ν − 1), gs = μ(μ− 1) , (6)

and the ground state energy is

E0 = 2ω(1 + 6μ+ 6ν) . (7)

The eigenfunctions ψn(x) of the Hamiltonian (3) have a factorized form

ψn(x) = ψ0(x)φn(x) , (8)

where the common factor ψ0(x) is the ground state eigenfunction (4) and n is multi-
index given by four quantum numbers of the eigenstate. The functions φn(x) in (8) are
eigenfunctions of the transformed Hamiltonian

hratF4
≡ −2ψ0

−1
[
H

(rat)
F4

− E0

]
ψ0 , (9)

Then, the eigenvalue problem becomes

hratF4
φn = εnφn ,
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where εn = −2(En − E0).
The Hamiltonian (9) acquires an algebraic form (i.e. the form of a second order

differential operator with polynomial coefficients) when it is written in terms of an
algebraically independent set of Weyl invariant variables defined as

t(Ω)
a =

1

12

|Ω|∑
k=1

(αk, x)
a, αk ∈ Ω , (10)

where a = 2, 6, 8, 12 are the degrees of the polynomial invariants of the F4 Weyl group,
and αk are the roots of a conveniently chosen Weyl orbit Ω. In the present study, Ω was
chosen as the orbit generated by the highest root 1 e3 + e4 with size |Ω| = 24. As a matter
of fact, this orbit consists of all (positive and negative) long roots. The factor 1/12 in the
definition (10) was introduced for convenience.

The fact that the invariants of given degrees (10) are defined up to polynomials in
invariants of lower degree was used in [6] to obtain a particular set of invariants of
fixed degrees τa, (a=2,6,8,12) leading to a simple algebraic form of the Hamiltonian. These
invariants are related to orbital ones (10) in the following manner

τ2 = t
(Ω)
2 , τ6 =

1

12
t
(Ω)
6 − 1

12

(
t
(Ω)
2

)3
, (11)

τ8 =
1

80
t
(Ω)
8 − 1

30
t
(Ω)
2 t

(Ω)
6 +

1

48

(
t
(Ω)
2

)4
,

τ12 =
1

720
t
(Ω)
12 − 5

288

(
t
(Ω)
2

)2
t
(Ω)
8 +

1

27

(
t
(Ω)
2

)3
t
(Ω)
6 − 29

1440

(
t
(Ω)
2

)6 − 1

1080

(
t
(Ω)
6

)2
,

and are given explicitly in Appendix A. In terms of the τ2, τ6, τ8, τ12, the Hamiltonian (9)

hratF4
(τ) = Aμ η

∂2

∂τμ∂τη
+ Bμ

∂

∂τμ
, (12)

takes the algebraic form where the coefficient functions Aμ,η,Bμ are polynomial in τa,

hratF4
(τ) =4τ2

∂2

∂τ22
+

2

3
τ2(τ2τ6 + 10τ8)

∂2

∂τ26
+ 2(τ2τ12 + 2τ6τ8)

∂2

∂τ28
+ 6τ8(τ2τ12 + 2τ6τ8)

∂2

∂τ212

+ 24τ6
∂2

∂τ2∂τ6
+ 32τ8

∂2

∂τ2∂τ8
+ 48τ12

∂2

∂τ2∂τ12
+

8

3
(τ2

2τ8 + 6τ12)
∂2

∂τ6∂τ8

+ 4(τ2
2τ12 + 8τ8

2)
∂2

∂τ6τ12
+ 4(2τ2τ8

2 + 3τ6τ12)
∂2

∂τ8τ12
(13)

− 4[ωτ2 − 2(6ν + 6μ+ 1)]
∂

∂τ2
− [12ωτ6 − τ2

2(4ν + 2μ+ 1)]
∂

∂τ6

− 4[4ωτ8 − τ6(1 + 3ν)]
∂

∂τ8
− 4[6ωτ12 − τ2τ8(2 + 3ν)]

∂

∂τ12
.

1 Since the root e1 + e2 ∈ Ω(e3 + e4), the orbit actually coincides with the orbit used in the previous
studies[4, 6].
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This algebraic Hamiltonian has infinitely many invariant polynomial subspaces of the
form

P(1,2,2,3)
n = 〈τp12 τp36 τp48 τp612 | 0 ≤ 1p1 + 2p3 + 2p4 + 3p6 ≤ n〉 , n = 0, 1, 2, . . . (14)

which are marked by the characteristic vector (1, 2, 2, 3) of minimal possible gradings for
the invariants τ2, τ6, τ8, τ12, respectively. Incidentally, this characteristic vector coincides
with the F4 highest root among short roots when written in the basis of simple roots.
Interestingly, the invariant subspaces (14) form an infinite flag

P(1,2,2,3)
0 ⊂ P(1,2,2,3)

1 ⊂ P(1,2,2,3)
2 ⊂ . . . ⊂ P(1,2,2,3)

n ⊂ . . . , (15)

which we call minimal flag. Since the algebraic Hamiltonian hratF4
(τ) (τ stands for

τ2, τ6, τ8, τ12) preserves this infinite flag (15), thus it is exactly solvable (for a discussion

see e.g. [6]). The eigenfunctions from the spaces P(1,2,2,3)
n , n = 0, 1, 2 are presented in

Appendix B.

There exists an algebra of differential operators for which the space P(1,2,2,3)
n is the finite-

dimensional irreducible representation space [4]. This algebra is called f (4) . This algebra
is infinite-dimensional but finitely-generated. The rational F4 Hamiltonian in algebraic
form hratF4

(τ) can be rewritten in terms of the generators of this algebra (see [4]).

3.1. Flat Metric of the F4-rational Model.
Gauge rotated Hamiltonian hratF4

(9) in algebraic form (12) can be written as

hratF4
= Δg + Cb ∂

∂τb
, (16)

where the Laplace-Beltrami operator

Δg =
1

g1/2
∂

∂τa
(gabg1/2)

∂

∂τb
= gab

∂2

∂τa∂τb
+ gb

∂

∂τb
, gb ≡ 1

g1/2
∂

∂τa
(gabg1/2) (17)

with a, b = 2, 6, 8, 12 and g is determinant. The symmetric in a → b metric, gab = gba has
polynomial in τ matrix elements

gab =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4τ2 12τ6 16τ8 24τ12

2
3τ2(τ2τ6 + 10τ8)

4
3(τ2

2τ8 + 6τ12) 2(τ2
2τ12 + 8τ8

2)

2(τ2τ12 + 2τ6τ8) 2(2τ2τ8
2 + 3τ6τ12)

6τ8(τ2τ12 + 2τ6τ8)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (18)
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This metric has a special property: any component gb of the vector �g in (17) is also
polynomial in τ

�g = (8, τ22 , τ6, 2τ2τ6) .

The same property has the vector Cb (see (16)) which characterizes the interaction in (3)

−�C =

(
4[ωτ2 − 12(ν + μ)], 2[6ωτ6 − (2ν + μ)τ2

2], 4[4ωτ8 − 3ντ6], 12[2ωτ12 − ντ2τ8]

)

3.2. Spectrum of the F4-rational Model.
Since the invariants τ2, τ6, τ8, τ12 have a natural ordering given by their degrees, the
Hamiltonian (13) has a triangular form in the basis of monomials τn1

2 τn2
6 τn3

8 τn4
12 The

spectrum is easily obtained:

εn1,n2,n3,n4 = −4ω(2n1 + 6n2 + 8n3 + 12n4) , n1,2,3,4 = 0, 1, 2, . . . . (19)

The spectrum (19) does not depend on couplings g�, gs and is equidistant with a degeneracy
corresponding to the partitions of integer N = 2n1+6n2+8n3+12n4. So, the interactions
in (3) have the only effect of modifying the degeneracy of the energies corresponding to
the 4-dimensional isotropic harmonic oscillator part of the Hamiltonian (3).

3.3. Ground state eigenfunction and Potential in τ variables
The ground state eigenfunction (4) and the original potential can be written in terms of the
invariant variables (11). After straightforward but sometimes rather tedious calculations
we find that (

Δ+Δ−
)2

= 64 (−3 τ212 + 4 τ38 ) ≡ 64 P1(τ) ,

(
Δ0Δ

)2
=

1

4096
(−192 τ212 + 256 τ38 + 144 τ26 τ12 − 27 τ46 − 192 τ2 τ6 τ

2
8

+ 48 τ22 τ8 τ12 + 30 τ22 τ
2
6 τ8 − 12τ32 τ6 τ12 +

1

2
τ32 τ

3
6

+ τ42 τ
2
8 − 1

2
τ52 τ6 τ8 +

1

6
τ62 τ12) ≡

1

212
P2(τ) ,

hence, the unnormalized ground state eigenfunction (4) is

ψ0(τ) = P1(τ)
ν/2P2(τ)

μ/2 e−
1
2
ωτ2 , (20)

(cf. (4)).
The potential V rat

F4
can be represented as

V rat
F4

= ω2Vω + g�Vν + gsVμ , (21)
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where
Vω =

τ2
2
, (22)

Vν = − 9
(τ2 τ12 − 2 τ6 τ8) τ8

P1(τ)
, (23)

Vμ = − 1

8

(
τ2

4 − 48 τ2 τ6 + 192 τ8
)(

τ2
3τ8 − 3 τ2(τ6

2 + 8 τ12) + 48 τ6 τ8

)
P2(τ)

. (24)

Thus, the original potential (3) is a rational (meromorphic) function in τ -variables.
From the expressions (23) and (24), it is clear that the singularities of the potential are
defined by the zeroes of the (ground state) factors P1(τ), P2(τ) (cf.(5)), and therefore they
define the boundaries of the configuration space.

3.4. sl(2) quasi-exactly-solvable F4-invariant rational model

It can be shown [6] that the polynomial generalization of the potential V
(rat)
F4

(21),

V
(qes)
F4

(τ) = V
(rat)
F4

+a2τ32 +2aωτ22 +2a[2k−γ+3(4μ+4ν+1)]τ2+
2γ[γ − 12μ− 12ν − 1)]

τ2
,

where a, γ are real parameters, k is non-negative integer, μ, ν are given in (6), leads to the
so-called sl(2) quasi-exactly-solvable F4-invariant rational Hamiltonian

H
(qes)
F4

= −Δg(τ) + V
(qes)
F4

(τ) .

This Hamiltonian has a single finite-dimensional invariant subspace P(1,2,2,3)
k (see (14)).

Hence, (k + 1) eigenfunctions have the form

Ψ
(qes)
k = (Δ−Δ+)

ν (Δ0Δ)μ τγ2 Pk(τ2) exp
[
−ωτ2 − a

4
τ22

]
(25)

= τγ2 Pk(τ2) exp

(
− a

4
τ22

)
Ψ0 ≡ Pk(τ2)Ψ

(qes)
0 ,

where Pk(τ2) is a kth degree polynomial, and can be found algebraically. It can be easily
checked that

h
(qes)
F4

(τ) = (Ψ
(qes)
0 )

−1 [
H

(qes)
F4

− E0

]
Ψ

(qes)
0 ,

is algebraic operator.
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3.5. Particular integral
Let us consider a certain Euler-Cartan operator in τ -variables

J 0 = τ1
∂

∂τ1
+ 2τ2

∂

∂τ2
+ 2τ3

∂

∂τ3
+ 3τ4

∂

∂τ4
.

and form

i(k)par(τ) =

k∏
j=0

(J 0 − j) . (26)

It is easy to check that

i(k)par(τ) : P(1,2,2,3)
k �→ 0 .

So, P(1,2,2,3)
k is the space of zero modes for i

(k)
par(τ). Hence, this operator commutes with

both hratF4
and hqesF4

,

[hratF4
(hqesF4

) , i(k)par(τ)] : P(1,2,2,3)
k �→ 0 .

The operator i
(k)
par is called a particular integral.

4. F4 Trigonometric Model
The Hamiltonian of the quantum F4 trigonometric model is given by 2

Htrig
F4

= −1

2

4∑
k=1

∂2

∂x2k
+ gl

β2

4

∑
1≤j<i≤4

(
1

sin2 β
2 (xi − xj)

+
1

sin2 β
2 (xi + xj)

)
(27)

+ gs
β2

8

4∑
i=1

1

sin2 β
2xi

+ gs
β2

8

∑
νj=0,1

1

sin2 β
4

(
x1 + (−)ν2 x2 + (−)ν3 x3 + (−)ν4 x4

) ,

where gs, g� are coupling constants assigned to the potential terms associated with short and
long roots respectively. The configuration space is the F4-Weyl Alcove. The Hamiltonian
(27) is invariant with respect to F4-Weyl group transformations. The parameter β (the
inverse of the period) is a parameter introduced for convenience in such a way that

lim
β→0

Htrig
F4

→ Hrat
F4

(ω = 0) ,

i.e. the rational model (without the harmonic oscillator term) is reproduced. If β → iβ,
the Hamiltonian (27) becomes the Hamiltonian of the F4-invariant hyperbolic model.

The ground state eigenfunction of the Hamiltonian (27) is given by

ψ0(x) = (Δ+Δ−)ν (ΔΔ0)
μ , (28)

2 In previous studies [4, 7] the analysis of the F4-trigonometric Hamiltonian was done in the dual root
space.
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where

Δ+Δ− =
∏

αlong∈F4
+

sin
β

2
(αlong · x) , (29)

ΔΔ0 =
∏

αshort∈F4
+

sin
β

2
(αshort · x) . (30)

and the exponents μ, ν in the ground state eigenfunction (28) are connected to the coupling
constants gs, g� by the relations

g� = ν(ν − 1) , gs = μ(μ− 1) .

The ground state eigenvalue is then

E0 =
1

2
β2

(
14 ν2 + 18 ν μ+ 7μ2

)
,

which can be written in terms of the deformed Weyl vector3

� =
1

2

⎛
⎝μ

∑
αshort∈F+

4

αshort + ν
∑

αlong∈F+
4

αlong

⎞
⎠ , (31)

as

E0 =
1

2
β2�2 .

All eigenfunctions ψn(x) of the Hamiltonian operator (27) have a factorized form

ψn(x) = ψ0(x)φn(x) .

The functions φn(x) are eigenfunctions of the gauge rotated Hamiltonian operator defined
by

htrigF4
= − 2

β2
ψ−1
0

[
Htrig

F4
− E0

]
ψ0 . (32)

Then, the eigenvalue problem becomes

htrigF4
φn = εnφn ,

where εn = − 2
β2 (En − E0).

Let us introduce the Weyl-invariant trigonometric coordinates (see [7])

τa ≡
∑
ω∈Ωa

ei β(ω·x) , a = 1, 2, 3, 4 (33)

3 The standard definition for the Weyl vector is ρ = 1
2

∑
α∈R+ α.
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where Ωa is the Weyl orbit generated by the fundamental weight �a:
4

�1 = e4, �2 = e3 + e4, �3 =
1

2
(e1 + e2 + e3 + 3e4), �4 = e2 + e3 + 2e4. (34)

The corresponding orbit sizes are |Ωa| = 24, 24, 96, 96 for a = 1, 2, 3, 4 respectively. The
explicit form of variables τa, a = 1, 2, 3, 4 is given at Appendix C.

Changing variables {x} → {τ} we obtain the gauge-rotated Hamiltonian (32)

htrigF4
=

4∑
a,b=1

Aab
∂2

∂τa ∂τb
+

4∑
a=1

Ba
∂

∂τa
, (35)

with coefficient functions

A1,1 = −τ1
2 + 12 τ1 + 6 τ2 + τ3 + 48 ,

A1,2 = −τ1τ2 + 12 τ1 + 3 τ3 ,

A1,3 = 12 τ1
2 + 4 τ1τ2 − 3/2 τ1τ3 − 96 τ1 − 42 τ2 − 24 τ3 + 3/2 τ4 − 288 ,

A1,4 = 4 τ1τ2 − 2 τ1τ4 + 2 τ2τ3 − 48 τ1 − 12 τ3 ,

A2,2 = 12 τ1
2 − 2 τ2

2 − 96 τ1 − 48 τ2 − 24 τ3 + 2 τ4 − 192 ,

A2,3 = −24 τ1
2 − 4 τ1τ2 + 3 τ1τ3 − 2 τ2τ3 + 240 τ1 + 108 τ2 + 60 τ3 − 9 τ4 + 576 ,

A2,4 = −24 τ1
3 − 4 τ1

2τ2 + 96 τ1
2 + 104 τ1τ2 + 72 τ1τ3 − 6 τ1τ4 + 12 τ2

2 + 8 τ2τ3

−3 τ2τ4 + 3 τ3
2 + 1536 τ1 + 480 τ2 + 288 τ3 − 48 τ4 + 2304 ,

A3,3 = 12 τ31 + 4 τ1
2τ2 − 96 τ1

2 − 60 τ1τ2 − 36 τ1τ3 + τ1τ4 − 4 τ2τ3 − 3 τ3
2

−384 τ1 − 48 τ2 − 48 τ3 + 12 τ4 ,

A3,4 = −16 τ1
2τ2 + 2 τ1τ2τ3 + 96 τ1

2 + 144 τ1τ2 − 12 τ1τ3 − 8 τ1τ4 + 72 τ2
2

+32 τ2τ3 − 6 τ2τ4 − 4 τ3τ4 − 960 τ1 − 48 τ2 − 240 τ3 + 36 τ4 − 2304 ,

A4,4 = 9216 + 2880 τ1τ2 + 576 τ1τ3 + 512 τ2τ3 + 16 τ1τ4 − 24 τ2τ4 − 96 τ1
2τ2

+16 τ3τ4 + 2 τ2τ3
2 − 8 τ1

2τ4 + 48 τ1τ2
2 − 16 τ1

3τ2 + 7680 τ1 + 6144 τ2 + 1152 τ3

+96 τ4 + 1344 τ1
2 + 864 τ2

2 − 192 τ1
3 + 24 τ3

2 − 6 τ4
2 + 48 τ1τ2τ3 − 4 τ1τ2τ4 ,

and

B1 = −τ1 − 24μ− (5μ+ 6 ν) τ1 ,

B2 = −2 τ2 − 48 ν − 6μ τ1 − (6μ+ 10 ν) τ2 ,

B3 = −3 τ3 − 24 (μ+ ν) τ1 − 12μ τ2 − 3 ( 3μ+ 4ν) τ3 ,

B4 = −6 τ4 + 576 ν + 24 (μ+ 8ν) τ1 − 24 (μ− 4 ν) τ2 + 48 ν τ3 − 6 ( 2μ+ 3ν) τ4

−24 ν τ1
2 − 4μ τ1τ2 .

4 Bourbaki numbering: �1 = e1 + e2, �2 = 2e1 + e2 + e3, �3 = 1
2
(3e1 + e2 + e3 + e4), �4 = e1,

(see [12]).
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4.1. Flat Metric of the F4-trigonometric Model.
It is evident that gauge rotated Hamiltonian htrigF4

(32) in algebraic form (35) can be written
as

β2 htrigF4
= Δg + Cb ∂

∂τb
, (36)

where the Laplace-Beltrami operator

Δg =
1

g1/2
∂

∂τa
(gabg1/2)

∂

∂τb
= gab

∂2

∂τa∂τb
+ gb

∂

∂τb
, gb ≡ 1

g1/2
∂

∂τa
(gabg1/2) , (37)

with a, b = 1, 2, 3, 4 and g is determinant. The symmetric (in a ↔ b) metric, gab = gba has
polynomial in τ matrix elements

gab =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1,1 A1,2 A1,3 A1,4

A2,2 A2,3 A2,4

A3,3 A3,4

A4,4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (38)

This flat metric has a special property: any component gb of the vector �g in (37) is also
polynomial in τ

−�g = (τ1, 2τ2, 3τ3, 6τ4) .

The same property has the vector Cb (see (36)) which characterizes the interaction in (27)

−�C =

(
24μ+(5μ+6ν)τ1, 48ν+6μτ1+2(3μ+5ν)τ2, 24(μ+ν)τ1+12μτ2+3(3μ+4ν)τ3,

−576ν − 24(μ+ 8ν)τ1 + 24(μ− 4ν)τ2 − 48ντ3 + 6(2μ+ 3ν)τ4 + 24ντ1
2 + 4μτ1τ2

)
.

4.2. Ground state eigenfunction and potential of F4-trigonometric model in τ -variables
The ground state eigenfunction (28) and the original potential in (27) can be written
in terms of the invariant variables (33). After straightforward but very cumbersome
calculations we find that

(Δ+Δ−)2 =
(
1

2

)24

P1(τ) , (ΔΔ0)
2 =

(
1

2

)24

P2(τ) ,
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where

P1(τ) = −1728 τ1
6 − 1728 τ1

5τ2 − 432 τ1
4τ2

2 + 32 τ1
3τ2

3 + 16 τ1
2τ2

4 + 20736 τ1
5

+34560 τ1
4τ2 + 10368 τ1

4τ3 − 864 τ1
4τ4 + 18432 τ1

3τ2
2 + 8640 τ1

3τ2τ3

−576 τ1
3τ2τ4 + 432 τ1

3τ3
2 + 2976 τ1

2τ2
3 + 1728 τ1

2τ2
2τ3 − 72 τ1

2τ2
2τ4

+216 τ1
2τ2τ3

2 − 224 τ1τ2
4 − 96 τ1τ2

3τ3 + 8 τ1τ2
3τ4 − 64 τ2

5 − 32 τ2
4τ3

−4 τ2
3τ3

2 + 103680 τ1
4 + 6912 τ1

3τ2 − 34560 τ1
3τ3 + 1728 τ1

3τ4

−88128 τ1
2τ2

2 − 79488 τ1
2τ2τ3 + 5184 τ1

2τ2τ4 − 18144 τ1
2τ3

2 + 2592 τ1
2τ3τ4

−108 τ1
2τ4

2 − 45888 τ1τ2
3 − 43200 τ1τ2

2τ3 + 2592 τ1τ2
2τ4 − 13392 τ1τ2τ3

2

+1296 τ1τ2τ3τ4 − 36 τ1τ2τ4
2 − 1296 τ1τ3

3 + 108 τ1τ3
2τ4 − 6384 τ2

4 − 6592 τ2
3τ3

+328 τ2
3τ4 − 2520 τ2

2τ3
2 + 144 τ2

2τ3τ4 + τ2
2τ4

2 − 432 τ2τ3
3 + 18 τ2τ3

2τ4

−27 τ3
4 − 774144 τ1

3 − 1465344 τ1
2τ2 − 663552 τ1

2τ3 + 62208 τ1
2τ4

−787968 τ1τ2
2 − 566784 τ1τ2τ3 + 48384 τ1τ2τ4 − 103680 τ1τ3

2 + 17280 τ1τ3τ4

−864 τ1τ4
2 − 129024 τ2

3 − 119808 τ2
2τ3 + 9024 τ2

2τ4 − 36288 τ2τ3
2 + 4608 τ2τ3τ4

−192 τ2τ4
2 − 3456 τ3

3 + 432 τ3
2τ4 − 4 τ4

3 − 5308416 τ1
2 − 4866048 τ1τ2

−1990656 τ1τ3 + 221184 τ1τ4 − 1096704 τ2
2 − 774144 τ2τ3 + 78336 τ2τ4

−138240 τ3
2 + 27648 τ3τ4 − 1728 τ4

2 − 10616832 τ1 − 4423680 τ2 − 1769472 τ3

+221184 τ4 − 7077888 ,

P2(τ) = −16 τ1
5 + 48 τ1

3τ2 + 112 τ1
3τ3 − 4 τ1

3τ4 + τ1
2τ3

2 + 4608 τ1
3 + 1728 τ1

2τ2

+384 τ1
2τ3 − 144 τ1

2τ4 − 216 τ1τ2τ3 − 192 τ1τ3
2 + 18 τ1τ3τ4 − 4 τ3

3 − 18432 τ1
2

−20736 τ1τ2 − 14976 τ1τ3 + 1728 τ1τ4 − 3888 τ2
2 − 5184 τ2τ3 + 648 τ2τ4 − 1728 τ3

2

+432 τ3τ4 − 27 τ4
2 − 110592 τ1 − 41472 τ2 − 27648 τ3 + 3456 τ4 − 110592 .

Thus, the unnormalized ground state eigenfunction (28) becomes

ψ0(τ) = P1(τ)
ν/2 P2(τ)

μ/2 , (39)

(cf. (28)).
It is evident that the original potential of F4-invariant trigonometric model (27) can be

written in terms of τ variables. The simplest way to do it is to invert the gauge rotation
(32) with the ground state eigenfunction (39) of the algebraic operator (35). After quite
sophisticated technically, tedious calculations we get

V trig
F4

(τ) = −g�β
2N1(τ)

P1(τ)
− gsβ

2

2

N2(τ)

P2(τ)
, (40)
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where

N1 =
(
1728 τ1

6 + 1728 τ1
5τ2 + 432 τ1

4τ2
2 − 8 τ1

3τ2
3 − 8 τ1

2τ2
4 − 20736 τ1

5

−34560 τ1
4τ2 − 10368 τ1

4τ3 + 864 τ1
4τ4 − 19296 τ1

3τ2
2 − 8640 τ1

3τ2τ3

+504 τ1
3τ2τ4 − 432 τ1

3τ3
2 − 3456 τ1

2τ2
3 − 1728 τ1

2τ2
2τ3 + 60 τ1

2τ2
2τ4

−216 τ1
2τ2τ3

2 + 88 τ1τ2
4 + 24 τ1τ2

3τ3 − 2 τ1τ2
3τ4 + 48 τ2

5 + 16 τ2
4τ3

+τ2
3τ3

2 − 103680 τ1
4 + 34560 τ1

3τ3 + 96192 τ1
2τ2

2 + 79488 τ1
2τ2τ3

−4176 τ1
2τ2τ4 + 18144 τ1

2τ3
2 − 2592 τ1

2τ3τ4 + 72 τ1
2τ4

2 + 50016 τ1τ2
3

+45792 τ1τ2
2τ3 − 2496 τ1τ2

2τ4 + 13392 τ1τ2τ3
2 − 1080 τ1τ2τ3τ4 + 18 τ1τ2τ4

2

+1296 τ1τ3
3 − 108 τ1τ3

2τ4 + 6912 τ2
4 + 7072 τ2

3τ3 − 352 τ2
3τ4 + 2628 τ2

2τ3
2

−120 τ2
2τ3τ4 + 432 τ2τ3

3 − 9 τ2τ3
2τ4 + 27 τ3

4 + 774144 τ1
3 + 1423872 τ1

2τ2

+663552 τ1
2τ3 − 72576 τ1

2τ4 + 785664 τ1τ2
2 + 546048 τ1τ2τ3 − 52992 τ1τ2τ4

+103680 τ1τ3
2 − 22464 τ1τ3τ4 + 1584 τ1τ4

2 + 134208 τ2
3 + 120960 τ2

2τ3

−9936 τ2
2τ4 + 35424 τ2τ3

2 − 5184 τ2τ3τ4 + 396 τ2τ4
2 + 3456 τ3

3 − 648 τ3
2τ4

+72 τ3τ4
2 + τ4

3 + 5308416 τ1
2 + 4534272 τ1τ2 + 1990656 τ1τ3 − 304128 τ1τ4

+1022976 τ2
2 + 718848 τ2τ3 − 96768 τ2τ4 + 138240 τ3

2 − 41472 τ3τ4 + 4032 τ4
2

+10616832 τ1 + 3981312 τ2 + 1769472 τ3 − 331776 τ4 + 7077888) ,

and

N2 =
(
12 τ1

5 − 4 τ1
4τ2 + 288 τ1

4 + 84 τ1
3τ2 − 100 τ1

3τ3 + τ1
3τ4 + 24 τ1

2τ2τ3 − 9216 τ1
3

−3600 τ1
2τ2 − 1584 τ1

2τ3 + 252 τ1
2τ4 − 180 τ1τ2τ3 + 180 τ1τ3

2 − 9 τ1τ3τ4

−36 τ2τ3
2 + τ3

3 + 34560 τ1
2 + 31104 τ1τ2 + 25920 τ1τ3 − 2592 τ1τ4 + 3888 τ2

2

+7776 τ2τ3 − 648 τ2τ4 + 3168 τ3
2 − 648 τ3τ4 + 27 τ4

2 + 165888 τ1 + 41472 τ2

+41472 τ3 − 3456 τ4 + 110592) .

Then, the F4-trigonometric potential written in τ -variables is a rational (meromorphic)
function! From the structure of the potential given in (40) it is clear that the singularities
of the potential are defined by the zeroes of the (ground state) factors P1(τ), P2(τ), and
therefore they lie on the boundaries of the configuration space.

4.3. Exact Solvability (Invariant subspaces)
The Hamiltonian (35) has an infinite number of invariant polynomial subspaces

P(p1,p2,p3,p4)
n ≡ {τn1

1 τn2
2 τn3

3 τn4
4 | 0 ≤ p1 n1 + p2 n2 + p3 n3 + p4 n4 ≤ n} , pi, ni ∈ N

which are labeled by certain characteristic vectors

(p1, p2, p3, p4) .
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For fixed (p1, p2, p3, p4) such invariant subspaces form a flag:

P0 ⊂ P1 ⊂ . . . ⊂ Pk ⊂ . . .

where, for simplicity in notations, we have denoted P(p1,p2,p3,p4)
n = Pn. The characteristic

vector corresponding to the minimal flag is:

(1, 2, 2, 3) ,

which coincides with the minimal flag found for the rational case. There are other flags,
which are invariant under the action of the Hamiltonian (35), are associated with the
characteristic vectors (2, 2, 3, 4), (2, 3, 4, 6), (2, 4, 4, 6) etc. Among these flags there are two
special flags, the first of which is characterized by the components5 of the Weyl-vector
(with respect to simple roots):

ρ = (8, 11, 15, 21) ,

and a second flag with characteristic vector defined by the components of the co-Weyl
vector :

ρ∨ = (11, 16, 21, 30) .

4.4. Spectrum of the F4-trigonometric model
In order to find the spectrum of the F4-trigonometric model we should introduce some
relevant concepts.
The weight lattice L(W ) is defined as the Z-span of the set of fundamental weights (34)
(denoted here as {wa, a = 1 . . . 4}). The cone of dominant weights L+(W ) contains the
lattice points with nonnegative integer coordinates:

L+ =

{
n =

4∑
a=1

nawa = (n1, n2, n3, n4) | na ≥ 0

}
. (41)

We can define a basis set of monomials

{τn = τn1
1 τn2

2 τn3
3 τn4

4 | n ∈ L+} ,
which is ordered according to the relation

|n|2 > |m|2 ⇒ τn > τm for n,m ∈ L+ .

The Hamiltonian (35) is triangular in this basis. Any eigenfunction can be marked by a
dominant weight p being of the form

ϕp = τp +
∑

|m|2<|p|2
cmτm (42)

5 arranged by increasing value, i.e. following a non-standard Dynkin ordering of the simple roots.

8th International Symposium on Quantum Theory and Symmetries (QTS8) IOP Publishing
Journal of Physics: Conference Series 512 (2014) 012014 doi:10.1088/1742-6596/512/1/012014

14



with energy (see [13]):

−εp = β2

(
(p,p) + 2(p, �)

)
, (43)

where � is the deformed Weyl vector (31).

4.5. Eigenfunctions

We consider the minimal flag of polynomial subspaces P(1,2,2,3)
n , where

P(1,2,2,3)
n ≡ {τp11 τp22 τp33 τp44 |0 ≤ 1 p1 + 2 p2 + 2 p3 + 3 p4 ≤ n} , n = 0, 1, 2, 3 . . . (44)

The ordering of monomials τp is given by the norm of the associated dominant weight
p = (p1, p2, p3, p4), i.e. by the formula

|p|2 = 3 p3
2 + 8 p3p4 + 6 p4

2 + 6 p2p4 + 2 p2
2 + 4 p2p3 + p1

2 + 4 p1p4 + 3 p1p3 + 2 p1p2 .

On the other side, the grading of the monomials τp is defined as 1 p1 + 2 p2 + 2 p3 + 3 p4
(for the minimal flag). Eigenfunctions are labeled by the coordinates of leading dominant
weight in (42) with an extra super-index labeling the grading n of invariant subspace (44) to

which the eigenfunction belongs. The eigenfunctions from the spaces P(1,2,2,3)
n , n = 0, 1, 2

are presented in Appendix D.

5. Conclusion
We revealed the algebraic-rational nature of the F4-invariant, rational and trigonometric
models in the space of orbits. It is shown that the kinetic energy operator is the Laplace-
Beltrami operator with metric with polynomial entries of zero Riemann tensor and the
potential is ratio of two polynomials. We have obtained algebraic forms for the F4-invariant
Hamiltonians, both rational and trigonometric, in terms of the Weyl invariants, polynomial
and exponential, respectively. They are second order differential operators with polynomial
coefficients. The both Hamiltonians preserve the same infinite flag of polynomial spaces
marked by the characteristic vector (1, 2, 2, 3), indicating exact solvability. It turns out that
for the trigonometric case a solution (formulas) for the Hamiltonian defined in the standard
root space looks easier than one obtained in previous studies [4, 7] where the Hamiltonian
was defined in the dual root space. It allows to unify the description of the F4-trigonometric
model under the same systematic description as it was done for the G2, E6,7,8 trigonometric
models (see [7]). Explicit examples of first polynomial eigenfunctions were presented for
the rational and trigonometric models. We showed for the first time that both F4-invariant
rational and trigonometric models have common particular integral in the space of orbits,
which annihilates the invariant subspace.
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Appendix A. The Weyl-invariant variables τ for the F4 rational model.

τ2 = x1
2 + x2

2 + x3
2 + x4

2 , (A.1)

τ6 =
1

6

(
x41x

2
2 + x1

4x3
2 + x41x4

2 + x21x
4
2 − 3x21x

2
2x

2
3 − 3x21x

2
2x

2
4

+x21x
4
3 − 3x21x

2
3x

2
4 + x21x

4
4 + x2

4x3
2 + x2

4x4
2 + x2

2x3
4

−3x22x
2
3x

2
4 + x22x

4
4 + x43x

2
4 + x23x

4
4

)
,

τ8 =
1

12

(
x1

4x2
4 − x1

4x2
2x3

2 − x1
4x2

2x4
2 + x1

4x3
4 − x1

4x3
2x4

2 + x1
4x4

4 − x1
2x2

4x3
2

−x1
2x2

4x4
2 − x1

2x2
2x3

4 + 6x1
2x2

2x3
2x4

2 − x1
2x2

2x4
4 − x1

2x3
4x4

2 − x1
2x3

2x4
4

+x2
4x3

4 − x2
4x3

2x4
2 + x2

4x4
4 − x2

2x3
4x4

2 − x2
2x3

2x4
4 + x3

4x4
4
)
,

τ12 =
1

72

(
x1

2x2
2 + x1

2x3
2 − 2x1

2x4
2 − 2x2

2x3
2 + x2

2x4
2 + x3

2x4
2
)

(
x21x

2
2 − 2x21x

2
3 + x21x

2
4 + x22x

2
3 − 2x22x

2
4 + x23x

2
4

)
(
2x21x

2
2 − x21x

2
3 − x21x

2
4 − x22x

2
3 − x22x

2
4 + 2x23x

2
4

)
.

Appendix B. Lowest Eigenfunctions of the F4-rational Model.

Here the eigenfunctions and eigenvalues corresponding to the spaces P(1,2,2,3)
n for n = 0, 1, 2

are presented in the explicit form:

• n = 0 (one eigenstate)

φ0 = 1 ,

ε0 = 0 .

• n = 1 (one eigenstate)

φ1 = τ2 − 2

ω
(6μ+ 6ν + 1) ,

ε1 = −4ω .
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• n = 2 (three eigenstates)

φ
(1)
2 = τ22 − 6

ω
(4μ+ 4ν + 1)τ2 +

6

ω2
(4μ+ 4ν + 1)(6μ+ 6ν + 1) ,

ε
(1)
2 = −8ω ,

φ
(2)
2 = τ6 − 1

4ω
(2μ+ 4ν + 1)τ22 +

3

4ω2
(2μ+ 4ν + 1)(4μ+ 4ν + 1)τ2

− 1

2ω3
(2μ+ 4ν + 1)(6μ+ 6ν + 1)(4μ+ 4ν + 1) ,

ε
(2)
2 = −12ω ,

φ
(3)
2 = τ8 − 1

ω
(3ν + 1)τ6 +

1

8ω2
(3ν + 1)(2μ+ 4ν + 1)τ22

− 1

4ω3
(3ν + 1)(2μ+ 4ν + 1)(4μ+ 4ν + 1)τ2

+
1

8ω4
(3ν + 1)(2μ+ 4ν + 1)(6μ+ 6ν + 1)(4μ+ 4ν + 1) ,

ε
(3)
2 = −16ω .
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Appendix C. The Weyl-invariant variables τ for the F4 trigonometric model.

τ1
2

= 8 cos(
β

2
x1) cos(

β

2
x2) cos(

β

2
x3) cos(

β

2
x4)

+ cos(β x1) + cos(β x2) + cos(β x3) + cos(β x4) (C.1)

τ2
4

= cos(β x1) cos(β x2) + cos(β x1) cos(β x3) + cos(β x1) cos(β x4)

+ cos(β x2) cos(β x3) + cos(β x2) cos(β x4) + cos(β x3) cos(β x4) (C.2)

τ3
8

= 2 cos(
β

2
x1) cos(

β

2
x2) cos(

β

2
x3) cos(3

β

2
x4) (C.3)

+2 cos(
β

2
x1) cos(

β

2
x2) cos(3

β

2
x3) cos(

β

2
x4)

+2 cos(
β

2
x1) cos(3

β

2
x2) cos(

β

2
x3) cos(

β

2
x4)

+2 cos(3
β

2
x1) cos(

β

2
x2) cos(

β

2
x3) cos(

β

2
x4)

+ cos(β x1) cos(β x2) cos(β x3) + cos(β x1) cos(β x2) cos(β x4)

+ cos(β x1) cos(β x3) cos(β x4) + cos(β x2) cos(β x3) cos(β x4)

τ4
16

= cos2(β x1) cos(β x2) cos(β x3) + cos2(β x1) cos(β x2) cos(β x4) (C.4)

+ cos2(β x1) cos(β x3) cos(β x4) + cos(β x1) cos
2(β x2) cos(β x3)

+ cos(β x1) cos
2(β x2) cos(β x4) + cos(β x1) cos(β x2) cos

2(β x3)

+ cos(β x1) cos(β x2) cos
2(β x4) + cos(β x1) cos

2(β x3) cos(β x4)

+ cos(β x1) cos(β x3) cos
2(β x4) + cos2(β x2) cos(β x3) cos(β x4)

+ cos(β x2) cos
2(β x3) cos(β x4) + cos(β x2) cos(β x3) cos

2(β x4)

− cos(β x1) cos(β x2)− cos(β x1) cos(β x3)− cos(β x1) cos(β x4)

− cos(β x2) cos(β x3)− cos(β x2) cos(β x4)− cos(β x3) cos(β x4)

Appendix D. Lowest Eigenfunctions of the F4-trigonometric Model.

Here, the eigenfunctions and eigenvalues corresponding to the spaces P(1,2,2,3)
n for n = 0, 1, 2

are presented in the explicit form:

• n = 0 . Ground state:

ϕ
(0)
[0,0,0,0] = 1 ,

ε
(0)
[0,0,0,0] = 0 .
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• n = 1 . One eigenstate:

monomials: [1, τ1], |p|2 : [0, 1], gradings: [0, 1]

ϕ
(1)
[1,0,0,0] = 1 +

1

24

(1 + 6 ν + 5μ)

μ
τ1 ,

ε
(1)
[1,0,0,0] = −(1 + 6 ν + 5μ) ,

• n = 2 . Three eigenstates:

(i) monomials: [1, τ1, τ2], |p|2 : [0, 1, 2], gradings:[0, 1, 2]

ϕ
(2)
[0,1,0,0] = 24

(
3μ2 + μ ν + 4 ν2 + ν

)
(4 ν + μ+ 1) (1 + 5 ν + 3μ)

+ 6
μ

4 ν + μ+ 1
τ1 + τ2 ,

ε
(2)
[0,1,0,0] = −2(1 + 5 ν + 3μ) .

(ii) monomials: [1, τ1, τ2, τ3], |p|2 : [0, 1, 2, 3], gradings:[0, 1, 2, 2]

ϕ
(2)
[0,0,1,0] = 8

(
6μ2 + 9μ ν + μ+ 8 ν2 + 3 ν

)
(3 ν + 2μ+ 1) (1 + 4 ν + 3μ)

+

(
6μ2 + 5μ ν + μ+ 2 ν2 + ν

)
μ (3 ν + 2μ+ 1)

τ1

+τ2 +
1

12

(3μ+ 1 + 2 ν)

μ
τ3 ,

ε
(2)
[0,0,1,0] = −3(1 + 4ν + 3μ) .

(iii) monomials: [1, τ1, τ2, τ3, τ
2
1 ], |p|2 : [0, 1, 2, 3, 4], gradings:[0, 1, 2, 2, 2]

ϕ
(2)
[2,0,0,0] = −8

(
8μ3 − 15μ2 + 4μ2ν − 32μ ν − 11μ− 3− 24 ν2 − 18 ν

)
(5μ+ 3 + 6 ν) (2 + 6 ν + 5μ)

−2

(
8μ3 − 9μ2 + 4μ2ν − 10μ ν − 9μ− 6 ν − 2− 4 ν2

)
(5μ+ 3 + 6 ν) (1 + 3μ)

τ1 + τ2

+
1

3

(2μ+ 1 + ν)

1 + 3μ
τ3 − 1

6

(
2μ2 + μ ν + 3μ+ 1 + ν

)
1 + 3μ

τ1
2 ,

ε
(2)
[2,0,0,0] = −2(2 + 6 ν + 5μ) .
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