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Abstract. A semiclassical analysis is presented to determine the quantum phase transition
from single to collective regimes in three-level atoms in the presence of a radiation field. The
energy surfaces of the Ξ, V, and Λ configurations are constructed by taking the expectation value
with respect to U(3) coherent states that carry the totally symmetric representation, determined
by the total number of atoms. The corresponding stability and equilibrium properties are
calculated by means of the catastrophe theory, discovering the bifurcation and Maxwell sets.
We establish that the atoms with Λ and Ξ configurations have the presence of double points,
i.e., there are two independent quantum states with the same energy that can be obtained
depending on the values of the dipolar strengths of the interaction between the atoms and the
radiation field. Additionally, the Ξ configuration exhibits a fixed triple point.

1. Introduction
The theory of quantum electrodynamics (QED) is used to study the interaction of atomic
or molecular matter with a radiation field [1]. It requires a quantum treatment of both the
particles and the field. QED is one of the most successful theories of physics, as is evident
from the examples of the Lamb shift, the anomalous magnetic moment of the electron, and the
electrodynamic relative displacement of the ground state of the positronium. Traditionally, the
Hamiltonian related to a system of non-interacting atoms in an electromagnetic field is formed
by three parts:

H = Ha +Hf +Haf , (1)

where the interaction term Haf is responsible for the exchange of energy between the radiation
field and the atomic sector. When the radiation field is considered classically and fixed externally,
a semiclassical method has been developed in which only the atomic and coupling parts are
described within the quantum mechanics formalism [2]. In this contribution, we take into account
the complete Hamiltonian within the quantum formalism.

The radiation field is usually described in terms of an infinite set of harmonic oscillators, one
for each mode of radiation. The amplitude of the electric field associated to a mode of frequency
ω is given by E0 =

√
h̄ω/(2ε0V ) with ε0 the permittivity of free space, and V the quantization

volume. Each atom is considered as a two-level system, and its coupling to the radiation is
described by the Rabi frequency Ωaf = dgeE0/h̄. Here dge denotes the matrix element of the
electric dipole operator of the atom between the ground and excited states. In free space the
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probability of photon emission per unit time is proportional to the Rabi frequency and to the
number of modes per unit of frequency interval [3, 4], that is,

Γ0 =
ω3

3πh̄c3

|dge|2

ε0
. (2)

The probability of survival of an atom in its excited state is given by the Fermi rule Pe(t) = e−Γ0t.
This exponential law describes an irreversible decay process of the atom to its ground state, g.
However, this can be changed dramatically in a high-Q cavity regime, like that of emission of
radiation between mirrors. The radiation rate in a cavity of volume V is given by [3]

Γcav = Γ0
Qλ3

V
, (3)

where Q denotes the quality factor of the cavity (which measures the lifetime of a photon in the
cavity), and λ is the wavelength of the radiation field. For some high-Q cavities, one can achieve
storage times of a photon running from a few milliseconds to a fraction of a second. Therefore,

we see that the rate of emission in free space can be increased by the ratio Qλ3

V , an advantage
which in [5] was exploited to enhance Γ0 by a factor of approximately 500. This type of cavity
leads to a reversible atom-field evolution [6].

A review of the dynamics of two- and three-level systems interacting with quantized cavity
electromagnetic fields is given in [7]. The Jaynes-Cummings model is the coupling of a two-
level system with a harmonic oscillator and it corresponds to the typical situation of QED in
a cavity. This model can also describe an ion in a trap when two ionic states are coupled by
laser beams with those states of the oscillator in the trap. The model was introduced in 1963
by Jaynes and Cummings as an idealization of the matter-field coupling in free space [8]. Many
theoretical predictions of this model, such as the existence of collapse and revivals in the Rabi
oscillations [9], the formation of macroscopic quantum states, the many experimental studies
of Rydberg atoms with very large principal quantum number within single-mode cavities, and
measures of entanglement associated with spin-squeezed states, have been confirmed [10].

A system of Na non-interacting two-level atoms coupled to a quantized electromagnetic field,
using the dipolar and the rotating wave approximations, was described by the Tavis-Cummings
Model [11, 12], having since then an extensive use in quantum optics [10]. The investigation of the
phase transitions of the system has been carried out in the thermodynamic limit [13, 14], and at
zero temperature [15, 16, 17]. The quantum description of a system of Na non-interacting atoms
under the action of a one-mode electromagnetic field allowed Dicke to predict the superradiance
phenomenon [18]. The Dicke model does not consider the rotating wave approximation and it
has been physically realized using a QED cavity with Bose-Einstein condensates [19, 20]. The
localization of the quantum phase transitions in the dipolar strength parameters was studied
in [21, 22, 23], and its relation with the position of extremal values for the Rényi-Wehrl entropies
in [24]. The system of three-level atoms in the Ξ and Λ configurations interacting with a one
mode radiation field together with a dipole-dipole interaction between the atoms has been used
to define a new concept about atomic squeezing [25, 26]. Spin variances for the V and Λ
configurations of an ensemble of atoms interacting with two light fields, a coherent pump state
and a squeezed vacuum as a probe, have been calculated by means of Langevin equations derived
from the Bloch equations [27]. By means of the Holstein-Primakoff transformation, normal and
superradiant stable states for the Λ configuration have been identified in the thermodynamic
limit [28].

More recently, we obtained in the rotating wave approximation (RWA), analytical expressions
of the quantum phase transitions and their order from the single to collective regimes for
three-level atoms interacting with a one-mode electromagnetic field for the Ξ, Λ, and V
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configurations [29]. These transitions appear reflected in the ground state energy surface Ec
and in their corresponding total number of excitations Mc, when plotted as functions of the
dipolar coupling constants (control parameters).

In this contribution we consider three-level atoms in a one-mode electromagnetic cavity in the
three possible atomic configurations Ξ, Λ, and V . We review thoroughly the procedure to define
the separatrix of the system in terms of the bifurcation and Maxwell sets. This includes the use
of good variational states associated to the coherent states of U(3) to describe the matter part,
together with the Heisenberg-Weyl coherent states for the description of the field. The separatrix
divides the single and collective regimes of the system, which can be shown through the analytic
expression for the vector states together with the corresponding statistical properties of light
and matter. We establish the presence of double points for the Ξ, and Λ atomic configurations;
for the Ξ case we additionally find the existence of a fixed triple point. This is independent
of the number of atoms of the system, and depends only on the values of the dipole coupling
strengths between the three-level states.

2. Model Hamiltonian
The one atom Hamiltonian can be written in terms of a three dimensional complete set of states
as follows

Ha =
3∑

k,j=1

(Ha)kj |k〉〈j| =
3∑
j=1

Ej |j〉〈j| , (4)

where in the last expression, we use the fact that the matrix element (Ha)kj of the Hamiltonian
satisfies (Ha)kj = Ejδjk. This means that the set of states {|k〉} with k = 1, 2, 3, are eigenstates
of the atom.

The one-mode electromagnetic field of frequency Ω is denoted by the Hamiltonian of a
harmonic oscillator Hf = h̄Ωa†a, and the coupling interaction is given by Haf = −~d · ~E with
~d = e~r denoting the dipole moment operator and ~E the external quantum electric field at the
position of the atom. In the long wavelength approximation the coupling interaction term is
given by

Haf = −1

2

3∑
j 6=k=1

µjk (|j〉〈k|+ |k〉〈j|)(a+ a†) , (5)

where we have defined µjk ≡
√

2πh̄Ω
V

∑
β( ~E0 · ~eβ (xβ)jk). Besides, we have used the fact that

the parameters µjk, which are proportional to the dipolar strengths, are only different from zero
when j 6= k. We take, without loss of generality, µjk = µkj .

Therefore the one three-level atom Hamiltonian interacting with a one-mode radiation field
can be written in the form

H = Ωa†a+
3∑
j=1

ωj A
(1)
jj −

1

2

3∑
j 6=k=1

µjk
(
A

(1)
jk +A

(1)
kj

)
(a+ a†) , (6)

where we have defined A
(1)
ij = |i〉〈j| and it is easy to prove that these operators satisfy the

commutation relations of a unitary group in 3 dimensions, U(3). We use from here onwards
Ej = h̄ ωj and units where h̄ = 1. This Hamiltonian presents the phenomenon of collapses
and revivals in the probabilities of finding the atom in a determined energy level in a dynamic
evolution of an arbitrary state, for a sufficiently large average number of photons in the cavity
(ν ≈ 10).

The extension of the problem to consider Na three-level atoms is straightforward through

the replacement of the matter operators as follows: Ajk =
∑
sA

(s)
jk , where A

(s)
jk denotes the
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Figure 1. Atomic configurations and dipolar coupling parameters.

atomic operator of the s-th atom and satisfies again the commutation relations of a U(3) group.
By means of the rotating wave approximation (RWA), that is, neglecting the terms in the
Hamiltonian that do not conserve the total number of excitations, we arrive to the expression
of the Hamiltonian model that is going to be used to determine the region in parameter space
in which there is a sudden change in the properties of the ground state of the system,

H = Ωa†a+ ω1A11 + ω2A22 + ω3A33

− µ12√
Na

(
A12 a

† +A21 a
)
− µ13√

Na

(
A13 a

† +A31 a
)
− µ23√

Na

(
A23 a

† +A32 a
)
. (7)

We have included the factor
√
Na in the expression of the dipolar strengths to replace the

quantization volume by its corresponding density of atoms. Additionally we are considering
that the energy levels obey the frequency inequalities ω1 ≤ ω2 ≤ ω3, in all of the atomic
configurations mentioned above. It can be easily proved that the total number of excitations
operator given by

MΞ = a† a+A22 + 2A33 , MΛ = a† a+A33 , MV = a† a+A22 +A33 , (8)

commutes with respect to the corresponding Hamiltonian. In Fig.(1) we show that: for the Ξ
atomic configuration one takes µ13 = 0; for Λ atoms we consider µ12 = 0; and for the V case,
µ23 = 0. The condition µij = 0 means that the transition from the atomic state j to the state i
is forbidden.

3. Energy surface
The energy surface is defined by means of the expectation value of the Hamiltonian with respect
to a variational test function. The structure of the Hamiltonian (7) leads us to choose the
Heisenberg-Weyl coherent states as a good starting point for the field part and the U(3) coherent
states for the matter. Major reasons for using these variational states are the facts that one can
obtain analytical expressions for the expectation values of all the matter and field observables,
and that they form a basis for the complete Hilbert space of the system in terms of four complex
parameters: one to describe the field, α, and three associated to the matter part, γk, with
k = 1, 2, 3. In this work we are going to consider only totally symmetric representations of the
U(3) group; then the corresponding coherent states depend only on two complex parameters γ2

and γ3. Therefore, the variational state constructed from the tensor product of matter and field
components can be written in the form [29]

|α;Na γ2, γ3〉 = e−|α|
2/2 eαa

† |0〉F ⊗

(
b†1 + γ3 b

†
2 + γ2 b

†
3

)Na

√
Na! (1 + |γ2|2 + |γ3|2)Na/2

|0, 0, 0〉F ,

=

√
Na! e−|α|

2/2

(1 + |γ2|2 + |γ3|2)Na/2

∞∑
ν=0

Na∑
q=0

q∑
r=0

αν γNa−q
2 γq−r3√

ν! (Na − q)! (q − r)! r!
|ν〉F |Na, q, r〉GT . (9)
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In the last expression, we expand the variational state in terms of the Fock states for the field,
|ν〉F and the Gelfand-Tsetlin basis [30, 31] for the matter, |Na, q, r〉GT . Notice that a|0〉 = 0
defines the vacuum state of the field and |α|2 measures the average number of photons. We

defined Γ† ≡ b†1 + γ3 b
†
2 + γ2 b

†
3 as a combination of three boson creation operators, this operator

was normalized by asking that [Γ,Γ†] = 1, with Γ ≡ b1 + γ∗3 b2 + γ∗2 b3.
For the totally symmetric representation, the U(3) generators can be realized in the form

Aij = b†i bj . It is straightforward to check that they satisfy the appropriate commutation relations
and that the action of the weight generators Aii on the GT basis is given by

A11|Na, q, r〉GT = r |Na, q, r〉GT ,
A22|Na, q, r〉GT = (q − r) |Na, q, r〉GT ,
A33|Na, q, r〉GT = (Na − q) |Na, q, r〉GT , (10)

while for the lowering generators one has that

A12|Na, q, r〉GT =
√

(q − r)(r + 1) |Na, q, r + 1〉GT ,

A13|Na, q, r〉GT =
√

(Na − q)(r + 1) |Na, q + 1, r + 1〉GT ,

A23|Na, q, r〉GT =
√

(Na − q)(q − r + 1) |Na, q + 1, r〉GT , (11)

where it is easy to check that the weight of the states in the right hand side is lower than that
of the states on the left hand side. The action of the raising generators can be obtained from
the previous results.

Because it is convenient to have an intensive quantity that describes the energy per particle,
in units of the photon energy, the expectation value of (7) with respect to (9) is given by

Ec(α,Na, γ2, γ3) =
1

Na Ω
〈α;Na, γ2, γ3|H|α;Na, γ2, γ3〉 . (12)

If we rewrite the complex parameters in their polar form, i.e., α = ρeiφ and γj = %je
iϕj with

j = 2, 3, one finds that the energy surface only depends on the angles ϑ3 = φ−ϕ3, ϑ2 = φ−ϕ2

and ϑ1 = φ−ϕ2 +ϕ3. Minimizing Ec with respect these phases, the critical values are given by
ϑkc = 0, π with k = 1, 2, 3, and it is not difficult to prove that a minimum is always obtained if
the energy surface is rewritten as

Ec = r2 +
ω̄1 + ω̄2 %

2
3 + ω̄3 %

2
2

1 + %2
2 + %2

3

− 2 r
µ̄12 %3 + µ̄13 %2 + µ̄23 %2 %3

1 + %2
2 + %2

3

. (13)

where we have made the following definitions: r ≡ ρ/
√
Na, ω̄k ≡ ωk/Ω with k = 1, 2, 3, and

µ̄ij ≡ |µij |/Ω. The absolute values for the dipolar strengths appear because the energy surface
is invariant under the interchange µij → −µij .

The critical points are determined by(
∂

∂r
,
∂

∂ρ2
,
∂

∂ρ3

)
Ec = ~0 . (14)

and the stability properties by its corresponding Hessian matrix,

H =


∂2Ec
∂r2

∂2Ec
∂r ∂ρ2

∂2Ec
∂r ∂ρ3

∂2Ec
∂ρ2 ∂r

∂2Ec
∂ρ22

∂2Ec
∂ρ2 ∂ρ3

∂2Ec
∂ρ3 ∂r

∂2Ec
∂ρ3 ∂ρ2

∂2Ec
∂ρ23


(r,ρ2,ρ3)→(rc,ρ2c,ρ3c)

,
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Figure 2. (Color online.) At left the bifurcation set of the V atomic configuration is shown
by a continuous line for the frequencies ω̄31 = 1.3 and ω̄21 = 1.1 and with a dashed line for the
double resonance case, ω̄31 = 1 and ω̄21 = 1. At right the separatrix of the Λ case is shown for
the single resonance case ω̄21 = 0.1 by a continuous line, and with a dashed line when in double
resonance ω̄21 = 0.

where rc, %2c and %3c stand for the critical values of r, %2 and %3, respectively.
From the expression (14) it is immediate that the variable r takes the critical value

rc =
µ̄12 %3c + µ̄13 %2c + µ̄23 %2c %3c

1 + %2
2c + %2

3c

. (15)

In general we are not able to have analytic solutions for %2c and %3c; however, the values
%2c = %3c = 0 are critical points for all values of the parameters of the Hamiltonian. It is
then possible to determine the eigenvalues of the Hessian matrix for each one of the atomic
configurations and conclude that there are bifurcations sets for each case [32]. They are given
by the locus of points

(µ̄12)Ξ =
√
ω̄21 , (µ̄13)Λ =

√
ω̄31 ,

(
µ̄2

12

ω̄21
+
µ̄2

13

ω̄31

)
V

= 1 , (16)

where we have used ω̄ij = ω̄i− ω̄j to denote the energy shifts between the atomic levels i and j.
For these sets the determinant of the Hessian is zero, and we note that the bifurcation sets for
the Ξ and Λ configurations are independent of the value of µ̄23. In all the bifurcation sets the
energy of the system is given by Ec = ω̄1, and there are two degenerate critical points. These
sets separate the control parameter space into a region where the total number of excitations
and the average number of photons are zero, and a region where they are different from zero.
The bifurcation set for the V configuration is displayed in Fig. 2 for the cases with detuning
∆21 = 0.1 and ∆31 = 0.3, and without detuning (∆ij ≡ ω̄ij − 1).

Recently [29] we found the minimum energy surface Ec as a function of the control parameters
µij . It changes its value from Ec = 0 (taking ω̄1 = 0) to Ec < 0, when a transition from M c = 0
(normal regime) to M c > 0 (collective regime) in the total number of excitations takes place.
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Figure 3. (Color online.) The separatrix of the three-level system is given together with the
minima ρ2c and ρ3c as functions of the dipolar strengths, in the double resonance case. At left:
the Ξ atomic configuration. At right; the Λ atomic configuration. In this last case the variable
ρ2c = 0. In both cases, the minima points yield an energy value Ec = 0.

This leads to the existence of a separatrix in parameter space, for which we were able to propose
the following ansatz:

ω̄21 = µ̄2
12 +

[
µ̄23 −

√
ω̄31
]2

Θ
[
µ̄23 −

√
ω̄31
]
, (Ξ configuration) ,

ω̄31 = µ̄2
13 +

[
µ̄23 −

√
ω̄21
]2

Θ
[
µ̄23 −

√
ω̄21
]
, (Λ configuration) ,

1 =
µ̄2

12

ω̄21
+
µ̄2

13

ω̄31
, (V configuration) . (17)

Here, Θ [x] stands for the Heaviside theta function. From these expressions one immediately
sees that for values of the dipolar strengths µ̄23 <

√
ω̄31 (Ξ config.) and µ̄23 <

√
ω̄21 (Λ config.)

one recovers Eq. (16). The separatrix establishes two regions in parameter space: in the internal
region the atoms manifest a single state behavior with a total number of excitations equal to
zero, while in the external one they have a multicomponent eigenstate with a total number of
excitations different from zero.

3.1. Ξ atomic configuration
The Ξ configuration forbids the transition ω1 ←→ ω3, and this is introduced in the Hamiltonian
by taking µ13 = 0. Also the condition ω2 ≈ ω3/2 is fulfilled, and the detuning should satisfy
∆21 ≈ ∆32 with |∆ij | small in order to maintain the RWA. The minima points of the energy
surface for the Ξ configuration can be obtained numerically as functions of µ̄12 and µ̄23. They
are displayed in Fig. 3 together with the separatrix. For values of µ̄23 >

√
2, on the locus of

points of the separatrix, there are two values of the variables with the same minimum energy:
%2c = %3c = 0, and %2c 6= 0 and %3c 6= 0. They have different values of the total number of
excitations. This shows the existence of a double point, that is, two independent variational
states with the same energy but different total number of excitations and average number of
photons. The value (µ̄12, µ̄23) = (1,

√
2) defines a triple point in parameter space, which is fixed

in the sense that it does not move when the number of particles is changed.
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3.2. Λ atomic configuration
For atoms in the Λ configuration it is required that the transition ω1 ←→ ω2 be forbidden, and
so we take µ12 = 0. Because of the convention ω1 ≤ ω2 ≤ ω3 used in the labeling of the energy
levels, the condition ω1 ≈ ω2 requires ∆31 − ∆32 ≈ 0 with ∆31 ≥ ∆32. The minima points
can be obtained analytically for the double resonant case ∆31 = ∆32 = 0. These are given by
%2c = %3c = 0 in the normal regime, with µ̄2

13 + µ̄2
23 ≤ 1; while in the collective regime we have

%2c =
1

µ̄13

√(
µ̄2

13 + µ̄2
23

) (
µ̄2

13 + µ̄2
23 − 1

)
µ̄2

13 + µ̄2
23 + 1

, %3c =
µ̄23

µ̄13
, (18)

where basis states withM > 0 contribute to the ground state. In Fig. 3 the minima are plotted

along the separatrix, for which %2c = 0 and %3c =

√
1−µ̄213
µ̄13

. This separatrix is displayed in Fig. 2

(right) for the single (one detuning parameter different from zero) and double resonance (both
detuning parameters equal to zero) cases.

3.3. V atomic configuration
A system of atoms in the V configuration requires µ23 = 0, since transitions between the levels
ω3 and ω2 are forbidden. Notice that the condition ω2 ≈ ω3 on ω1 ≤ ω2 ≤ ω3 reads, in terms of
the detuning, as ∆21 ≈ ∆31 but satisfying ∆21 ≤ ∆31.

In a similar way to the Λ configuration, when the detuning parameters are equal, ∆21 = ∆31,
the problem has an analytic solution. The critical points are %2c = %3c = 0 for the normal regime
implying an energy surface for the ground state equal to zero. For the collective regime, %2c and
%3c take the values

%2c = µ̄13

√
µ̄2

12 + µ̄2
13 − 1(

µ̄2
12 + µ̄2

13

) (
µ̄2

12 + µ̄2
13 + 1

) , %3c = µ̄12

√
µ̄2

12 + µ̄2
13 − 1(

µ̄2
12 + µ̄2

13

) (
µ̄2

12 + µ̄2
13 + 1

) . (19)

Notice that on the separatrix the critical points coalesce to the values ρc = ρ2 = ρ3 = 0, and all
the expectation values of the matter and field observables are given in terms of those values.

4. Quantum solution
The Hamiltonian (7) can be diagonalized in terms of the Fock states |ν〉 for the field part and
the Gelfand-Tsetlin (GT) states for the matter part

|ν; h1 h2 h3; q1 q2; r〉 = |ν〉 ⊗

∣∣∣∣∣∣
h1 h2 h3

q1 q2

r

〉
, (20)

where the labels of each row of the GT states denote the irreducible representations (irreps) of
the canonical chain of unitary groups U(3) ⊃ U(2) ⊃ U(1). The quantum labels of U(3) satisfy
the inequalities h1 ≥ h2 ≥ h3 ≥ 0; the ones for U(2) satisfy q1 ≥ q2 ≥ 0; and for U(1) r ≥ 0. The
branching rules [30] are the following: h2 ≤ q1 ≤ h1, h3 ≤ q2 ≤ h2, and q2 ≤ r ≤ q1. The irreps
of U(3) are determined by means of the different partitions of the total number of atoms Na in
terms of h1, h2, and h3 that satisfy the previous rules. As an example one may consider the three
atoms case Na = 3; the U(3) irreps are [3, 0, 0], [2, 1, 0], and [1, 1, 1]. These partitions of Na = 3
also indicate the symmetry of the particles under the action of the permutation group S3. The
first one is symmetric under the interchange of the atoms, and the last one is antisymmetric.
The middle irrep has a mixed symmetry.
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In this work, we want to consider only the symmetric case and then we set h2 = h3 = q2 = 0.
Therefore, the exact numerical calculation of the ground state energy may be evaluated using
h1 = Na and we can simplify the GT states notation as

|h1 0 0; q1 0; r〉GT ≡ |Na q1 r〉GT . (21)

The corresponding matrix elements of the operators Aij (for this particular basis) are easily

calculated in the bosonic realization Aij = b†i bj , which can be used to evaluate the matrix
elements of the Hamiltonian and to obtain numerically its eigenvalues.

For each particular atomic configuration (Ξ, Λ or V) there is an additional constant of
motion M , namely the total number of excitations MΞ, MΛ, and MV given by (8). These can
be gathered in a single equation as

M̂ = a† a+ λ2A22 + λ3A33 , (22)

where (λ2, λ3) = (1, 2) for the Ξ configuration; (λ2, λ3) = (0, 1) for the Λ case, and
(λ2, λ3) = (1, 1) for V . Then one has two constants of the motion: the total number of atoms

N̂ = A11 + A22 + A33, and the total number of excitations, and we can use them to write the
Hamiltonian (7) in units of the photon energy and per particle, H = H

NaΩ , as

H =
M

Na
+

∆

Na
A22 +

∆̄

Na
A33 −

µ̄12

N
3/2
a

(
A12 a

† +A21 a
)

− µ̄13

N
3/2
a

(
A13 a

† +A31 a
)
− µ̄23

N
3/2
a

(
A23 a

† +A32 a
)
, (23)

where we have taken ω̄1 = 0, and defined the parameters ∆ ≡ ω̄21−λ2, and ∆̄ ≡ ω̄32 + ω̄21−λ3.
Additionally, we have replaced the eigenvalues of N̂ and M̂ by Na and M , respectively.

Therefore, the bases of the different configurations can be written in the form

|ν Na q1 r〉Ξ ≡ |M − 2Na + q1 + r,Na q1 r〉 , M − 2Na + q1 + r ≥ 0 ,

|ν Na q1 r〉Λ ≡ |M −Na + q1, Na q1 r〉 , M −Na + q1 ≥ 0 ,

|ν Na q1 r〉V ≡ |M −Na + r, Na q1 r〉 , M −Na + r ≥ 0 . (24)

where we have used the corresponding values of λ2 and λ3.

4.1. Dimensions of the Hilbert space
The Hilbert space is strongly dependent on the values of M and Na. We start by giving the
dimension for the Ξ configuration:

dΞ(Na,M) =



(M/2 + 1)2 M even,M ≤ Na ,

(M + 1) (M + 3) /4 M odd, M ≤ Na ,

{2Na(2M −Na + 1)−M(M − 2) + 4} /4 Meven, Na ≤M ≤ 2Na ,{
2Na(2M −Na + 1)− (M − 1)2 + 4

}
/4 M odd, Na ≤M ≤ 2Na ,

(Na + 1)(Na + 2)/2 M ≥ 2Na .
(25)

For the Λ configuration, the dimension of the Hilbert space is given by

dΛ(Na,M) =

{
(M + 1) (2Na + 2−M)/2 M ≤ Na ,

(Na + 1)(Na + 2)/2 M ≥ Na ;
(26)

8th International Symposium on Quantum Theory and Symmetries (QTS8) IOP Publishing
Journal of Physics: Conference Series 512 (2014) 012006 doi:10.1088/1742-6596/512/1/012006

9



while for the V configuration one has

dV (Na,M) =

{
(M + 1)(M + 2)/2 M ≤ Na ,

(Na + 1) (Na + 2)/2 M ≥ Na .
(27)

These relations are important for the study of the system for a small average number of photons
in the cavity, because they imply a small number of total excitations M .

To find the quantum ground energy and its corresponding eigenstate, we proceed as follows.
For each configuration of the atom, a given value of M , and for fixed parameters Ω, ω1, ω2, and
ω3 the eigenvalues and their corresponding eigenstates are evaluated numerically as functions of
the control parameters µij . This gives us the ground state energy for each corresponding total
number of excitations. It is worth mentioning that, for a fixed region of values of the interaction
intensity, one may estimate the maximum value of M that is required to find the minimum
energy from the semi-classical calculation.

4.2. Single Regime
Next we show the single regime of the atoms for the three atomic configurations. As an example
we consider Na = 5 atoms; according to the dimension of the space one has a unique state for
the Ξ and V configurations. For the Λ case there are two situations: in the double resonance
case, ω̄21 = 0 and ω̄31 = 1, there are 6 degenerate eigenstates. If one has ω̄21 6= δ, with δ ≤ 0.2
the degeneracy is broken and the ground state of the system has all the atoms in their lowest
level and zero photons. However, if ω̄31 = ω̄32 6= 1, the system continues being degenerate. The
degeneracy for any number of atoms is equal to Na + 1, and it is present because the first and
second levels of the system have the same energy; this degeneracy will be broken when a small
energy difference between them is present. Assuming this approximation for the Λ configuration,
in the three cases one has all the non-interacting atoms in their lowest energy level and zero
photons for the radiation field.

4.3. Collective Regime
In the double resonance case, ∆ = ∆̄ = 0, the Hamiltonian for any of the atomic configurations
takes the form

HDR =
M

Na
− µ̄12 (A12 a

† +A21 a)

N
3/2
a

− µ̄13 (A13 a
† +A31 a)

N
3/2
a

− µ̄23 (A23 a
† +A32 a)

N
3/2
a

, (28)

where the first term is a constant of motion. For the Ξ configuration one has µ̄13 = 0 and
M denotes the eigenvalue of the total excitation number MΞ; for the Λ type of atomic spectra
µ̄12 = 0 and M is the eigenvalue of MΛ; while for the V atomic case one considers µ̄23 = 0 and
M is the eigenvalue of MV . Therefore one has

HDRΞ =
M

Na
− µ̄12 (A12 a

† +A21 a)

N
3/2
a

− µ̄23 (A23 a
† +A32 a)

N
3/2
a

,

HDRΛ =
M

Na
− µ̄13 (A13 a

† +A31 a)

N
3/2
a

− µ̄23 (A23 a
† +A32 a)

N
3/2
a

,

HDRV =
M

Na
− µ̄12 (A12 a

† +A21 a)

N
3/2
a

− µ̄13 (A13 a
† +A31 a)

N
3/2
a

. (29)

By means of the interaction picture of quantum mechanics one has the evolution equation in
terms of the coupling term of the Hamiltonian. In this double resonance case the coupling term
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Figure 4. (Color online.) Energy of the atomic configuration Ξ as a function of the total
number of excitations, M (horizontal axis). At left, the parameter value µ̄12 = 0.8 was used
while at right we took µ̄23 = 1.8. In both cases the number of atoms is Na = 10.

is time independent, so to find the spectra of the system one has to solve only the corresponding
eigenvalue equation. For these atomic configurations, when one of the dipolar strengths are
equal to zero the three-level system reduces to a two-level problem and only the levels involved
change their properties.

Ξ configuration
For the double resonance case, together with the equality of the dipolar strengths, µ̄12 = µ̄23,

it is easy to prove that the system is equivalent to a two-level system with the operators for the
matter given by S− = A12 +A23, S+ = A21 +A32, and S0 = (A33−A11)/2. The operator of the

total number of excitations takes the form MΞ = a†a+ N̂ + 2S0.
In the general case, for fixed values of µ̄12 and µ̄23 we explore in Fig. 4 the energy eigenvalues

as functions of the total number of excitations. The minimum of each curve determines the
ground state of the system. These are calculated for a fixed value of the dipolar strength
µ̄12 = 0.8 and for several values of µ̄23 to see the transition from the dominance of the state with
M = 0 to states with M > 0. The same was done for a fixed value of µ̄23 = 1.8 and changing
µ̄12 to see the transition from the normal regime to the collective regime. This is happening
because the separatrix of the Hamiltonian model is crossed.

Λ configuration
In the double resonance case the dipolar strengths are associated to transitions from two

degenerate levels to a third atomic level. Then, if one proposes

µ̄13 = µ cos θ , µ̄23 = µ sin θ (30)

together with the unitary transformation for the boson operators

c† = cos θ b†1 + sin θ b†2 , c = cos θ b1 + sin θ b2 , (31)

it is straightforward to find that the system is equivalent to a two-level case with the following

definitions for the matter observables: S+ = b†3 c, S− = c† b3, and S0 = (b†3b3 − c†c)/2.
In Fig. 5 we study the energy spectra as functions of the total number of excitations.

The spectra are calculated for a fixed value of the dipolar strength µ13 = 0.5 and detuning
∆32 = −0.1, and for several values of µ23 to see the transition from the dominance of the state
with M = 0 to states with M > 0. The same study was done in double resonance for a fixed
value of µ23 = 1.0 and changing µ13 to see again the transition to the collective regime.

V configuration
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Figure 5. (Color online.) Energy of the atomic configuration Λ as function of the total number
of excitations, M (horizontal axis). At left, the parameters µ̄13 = 0.5 and ∆32 = −0.1 were used
while at right we took µ̄23 = 1.0 and ∆32 = 0. In both cases the number of atoms is Na = 10.

In the double resonance case one has the transition from an atomic energy level to two
degenerate levels. One can then proceed in a similar way as for the Λ configuration, defining

µ̄12 = µ cos θ , µ̄13 = µ sin θ (32)

together with the unitary boson transformation

d† = cos θ b†2 + sin θ b†3 , d = cos θ b2 + sin θ b3 . (33)

It is straightforward to find that the system is equivalent to a two-level case with the following

definitions for the matter observables S+ = d† b1, S− = b†1 d, and S0 = (d†d− b†1b1)/2.
For this case the results for the energy spectra are very similar to those displayed in Fig. 5

for the Λ configuration.

5. Conclusions
We have established the existence of single and collective regimes for three-level atoms in the Ξ,
Λ, and V atomic configurations. These regions, in the dipolar parameter space, are separated
by the corresponding separatrix of each configuration. The separatrix of the Ξ and Λ atomic
configurations are constituted by bifurcation and Maxwell sets. In the bifurcation sector, the
transitions are of second order, two critical points coalesce: one of them yields zero values for the
expectation values of the total number of excitations and the photon number operator while the
other produces 〈M〉 and 〈Nph〉 different from zero. In the Maxwell region the quantum phase
transitions are of first order, and there are double critical points yielding the same energy (see
Fig.3). These double points are described by two independent states with different distribution
functions for M and for the number of photons. For the Ξ configuration there is additionally
a triple point, that is, three independent solutions with the same energy for any number of
particles. These states have total excitation quantum numbers MΞ = 0, MΞ = 1, and MΞ = 2,
noticing that the point is on the border between the bifurcation and Maxwell sets.

For the V atomic configuration we have found that the separatrix is formed by a bifurcation
set, where there are quantum phase transitions of second order and two critical degenerate
points. One of them implies zero values for the expectation values 〈M〉 and 〈Nph〉 and the other
yields expectation values of the same observables different from zero.

A connection between the double resonance case of the V and Λ configurations and two-
level systems was established by means of unitary transformations. These occupy degenerate
energy levels. This result allows for a check of consistency of our separatrix expressions with the
localization of the quantum phase transitions in the dipolar parameter space for corresponding
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two-level systems. Additionally, we expect that the form of the analytic expressions for the
separatrix of each configuration will only be modified by a constant factor if the rotating wave
approximation is not considered.

Finally, because the Hamiltonian commutes with M , a new variational state can be proposed
if we truncate the series expansion of the variational coherent states given in expression (9) by
replacing the photon quantum number as ν →M − λ3Na + (λ3− λ2)q+ λ2 r, renormalizing the
resulting expression, and using the same critical points of the variational coherent states. This
procedure has been used to calculate the fluctuation of the number of photons with very good
agreement with the exact quantum calculation [29].
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(under projects IN101614 and IN110114).

References
[1] Milonni P W 1994 The quantum vacuum: An introduction to quantum electrodynamics ( Academic Press).
[2] Craig D P and Thirunamachandrani T 1998 Molecular quantum electrodynamics: An introduction to radiation

molecule interactions (Dover).
[3] Haroche S and Kleppner D 1991Nonclassical effects in quantum optics, ed P. Myestre P and Walls D F (AIP)

p 402.
[4] Haroche S, Raimond J M 2007 Exploring the Quantum: Atoms, Cavities and Photons (Oxford University

Press).
[5] Goy P, Raymond J M, Gross M, and Haroche S 1983 Phys. Rev. Lett. 50 1903.
[6] Haroche S 1999 Latin-American School of Physics XXXI ELAF: New perspectives of quantum mechanics, Vol.
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