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Abstract. We discuss an interpretation of a simple supersymmetric matrix model with
a double-well potential as two-dimensional type IIA superstrings on a nontrivial Ramond-
Ramond background. In particular, we can see direct correspondence between single trace
operators in the matrix model and vertex operators in the type IIA theory by computing
scattering amplitudes and comparing the results in both sides. Next, we explicitly compute
nonperturbative instanton contributions in the matrix model and find that they survive in
a double scaling limit realizing the type IIA superstring theory. This suggests that the
supersymmetry is spontaneously broken by nonperturbative effect in the target space of the
type IIA superstring theory.

1. Introduction
Solvable matrix models for two-dimensional quantum gravity or noncritical string theory were
vigorously investigated around 1990, focusing on nonperturbative effects in string theory [1].
While this approach has been successful for bosonic string theory, little has been known for
superstring theory, in particular which possesses target-space supersymmetry (SUSY). We would
like to consider (solvable) matrix models describing superstring theory with target-space SUSY.
In this paper, we discuss correspondence between a simple zero-dimensional SUSY double-well
matrix model and two-dimensional type IIA superstring theory on a nontrivial Ramond-Ramond
(RR) background. Then, nonperturbative effect of the matrix model is computed in its double
scaling limit. As a result, we find that SUSY is spontaneously broken due to instantons in the
matrix model. According to the correspondence, this suggests spontaneous SUSY breaking at
the nonperturbative level in the type IIA superstring theory. We hope our analysis is helpful
to understand nonperturbative dynamics of matrix models of super Yang-Mills type for critical
superstring theory [2, 3, 4].

This article is mainly based on the work [5, 6, 7].

2. Double-well SUSY matrix model
Ref. [8] discussed a following simple matrix model:

S = N tr

[
1

2
B2 + iB(ϕ2 − µ2) + ψ̄(ϕψ + ψϕ)

]
, (1)
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where B and ϕ are N×N hermitian matrices, and ψ and ψ̄ are N×N Grassmann-odd matrices.
The action S is invariant under SUSY transformations generated by Q and Q̄:

Qϕ = ψ, Qψ = 0, Qψ̄ = −iB, QB = 0, (2)

Q̄ϕ = −ψ̄, Q̄ψ̄ = 0, Q̄ψ = −iB, Q̄B = 0, (3)

from which one can see that they are nilpotent: Q2 = Q̄2 = {Q, Q̄} = 0. After integrating
out B, we have a scalar potential of a double-well shape: 1

2(ϕ
2 − µ2)2. A large-N saddle point

equation for the eigenvalue distribution of the matrix ϕ: ρ(x) ≡ 1
N tr δ(x− ϕ) reads∫

dy ρ(y) P
1

x− y
+

∫
dy ρ(y) P

1

x+ y
= x3 − µ2x. (4)

Its solution with filling fraction (ν+, ν−) is given by

ρ(x) =

{
ν+
π x

√
(x2 − a2)(b2 − x2) (a < x < b)

ν−
π |x|

√
(x2 − a2)(b2 − x2) (−b < x < −a), (5)

where a =
√
µ2 − 2 and b =

√
µ2 + 2. The filling fractions satisfying ν+ + ν− = 1 indicate

that ν+N (ν−N) eigenvalues are around the right (left) minimum of the double-well. The

solution exists for µ2 > 2. The large-N free energy and the expectation values
⟨

1
N tr Bn

⟩
(n = 1, 2, · · ·) evaluated at the solution turn out to all vanish [8]. This strongly suggests that the
solution preserves SUSY. Thus, we conclude that the SUSY minima are infinitely degenerate and
parametrized by (ν+, ν−) at large N . Note that the edges of the support a and b are independent
of ν±. It is considered to be a characteristic feature of SUSY matrix models, not observed in
bosonic double-well matrix models [9, 10].

There exists a solution having support of a single interval x ∈ [−c, c] for µ2 < 2 [11]:

ρ(x) =
1

2π

(
x2 − µ2 +

c2

2

)√
c2 − x2 (6)

with c =
√

2
3

(
µ2 +

√
µ4 + 12

)1/2
. Positivity of ρ(x) yields the condition µ2 < 2. This solution

gives nonzero values of
⟨

1
N trB

⟩
and of the large-N free energy, showing that SUSY is broken.

We observed that the third derivative of the free energy with respect to µ2 is not continuous at
µ2 = 2. The transition between the SUSY phase (µ2 > 2) and the SUSY broken phase (µ2 < 2)
is of the third order.

In the next section, we will compute various correlation functions at the saddle point (5)
and find new logarithmic critical behavior as µ2 → 2 + 0. Based on the result, we will discuss
correspondence between the matrix model and two-dimensional type IIA superstring theory
on a nontrivial Ramond-Ramond (RR) background in sections 4 and 5. The logarithmic
critical behavior is somewhat reminiscent of the c = 1 matrix model which is a matrix
quantum mechanics of a single matrix variable [12]. The Penner model is known as a
zero-dimensional matrix model exhibiting the same critical behavior as the matrix quantum
mechanics [13]. 1 It describes noncritical string theory propagating on a two-dimensional
target space: (Liouville direction) × (S1 with self-dual radius). So, it is expected that our
matrix model can be regarded as a SUSY version of the Penner model and describes

1 Also is the normal matrix model [14], which corresponds to c = 1 noncritical strings on S1 with a general
radius.
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two-dimensional superstring theory with SUSY on the target space (Liouville direction) ×
(S1 with self-dual radius). Indeed, two-dimensional type II superstring theory with the identical
target space is constructed [15, 16, 17, 18], where target space SUSY exists only at the self-dual
radius of the circle.

Our matrix model is interpreted as the O(n) model on a random surface [19] with n = −2,
whose critical behavior is described by the c = −2 topological gravity [20]. The partition
function after B, ψ and ψ̄ are integrated out is expressed as a Gaussian one-matrix model by
the Nicolai mapping H = ϕ2, where the H-integration is over the positive definite hermitian
matrices, not over all the hermitian matrices. Ref. [21] discusses that the difference of the
integration region has only effects which are nonperturbative in 1/N , and the model can be
regarded as the standard Gaussian matrix model at each order of genus expansion.

The Nicolai mapping changes the operators 1
N tr ϕ2n (n = 1, 2, · · ·) to regular operators

1
N tr Hn. Hence, the behavior of their correlators is expected to be described by the Gaussian
one-matrix (the c = −2 topological gravity) at least perturbatively in 1/N . However, the
operators 1

N tr ϕ2n+1 (n = 0, 1, 2, · · ·) are mapped to ± 1
N tr Hn+1/2 that are singular at the

origin. They are not observables in the c = −2 topological gravity, while they are natural
observables as well as 1

N tr ϕ2n in the original setting (1). In the next section, we will see that
correlation functions among operators

1

N
tr ϕ2n+1,

1

N
tr ψ2n+1,

1

N
tr ψ̄2n+1 (n = 0, 1, 2, · · ·) (7)

exhibit logarithmic singular behavior of powers of ln(µ2 − 2) at the planar topology.
In considering correspondence of the matrix model to superstring theory, the following

observation will be helpful. Suppose ψ and ψ̄ are regarded as target-space fermions in the
corresponding superstring theory. Namely, ψ is interpreted as an operator in the (NS, R) sector
and ψ̄ in the (R, NS) sector in the RNS formalism. Then, under the so-called (−1)FL and
(−1)FR transformations changing the signs of operators in the left-moving Ramond sector and
those in the right-moving Ramond sector respectively, they transform as

(−1)FL : ψ → ψ, ψ̄ → −ψ̄, (8)

(−1)FR : ψ → −ψ, ψ̄ → ψ̄. (9)

In order for the matrix model action (1) to be invariant under the transformations, B and ϕ
should transform as

(−1)FL : B → B, ϕ→ −ϕ, (10)

(−1)FR : B → B, ϕ→ −ϕ. (11)

This indicates that B corresponds to an operator in the (NS, NS) sector, and ϕ in the (R, R)
sector.

3. Correlation functions
3.1. Planar one-point functions

The planar one-point function
⟨

1
N tr ϕn

⟩
0
(n = 1, 2, · · ·) are computed as

⟨
1

N
tr ϕn

⟩
0

=

∫
dxxnρ(x)

= (ν+ + (−1)nν−)(2 + µ2)n/2F

(
−n
2
,
3

2
, 3;

4

2 + µ2

)
, (12)
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where the suffix “0” in the left hand side indicates the planar contribution. For n even, the
expression reduces to a polynomial of µ2 giving nonsingular behavior as expected from the
c = −2 topological gravity. On the other hand, when µ2 is odd, it exhibits logarithmic singular
behavior as µ2 → 2 + 0:⟨

1

N
tr ϕ2k+1

⟩
0
∼ (ν+ − ν−)

2k+2

π

(2k + 1)!!

(k + 2)!
ωk+2 lnω (13)

with ω ≡ 1
4(µ

2−2). The symbol “∼” denotes equality up to additive less singular terms. Explicit
form for a first few expectation values reads⟨

1

N
tr ϕ

⟩
0

= (ν+ − ν−)

[
64

15π
+

16

3π
ω +

2

π
ω2 lnω +O(ω2)

]
,⟨

1

N
tr ϕ3

⟩
0

= (ν+ − ν−)

[
1024

105π
+

128

5π
ω +

16

π
ω2 +

4

π
ω3 lnω +O(ω3)

]
,⟨

1

N
tr ϕ5

⟩
0

= (ν+ − ν−)

[
8192

315π
+

2048

21π
ω +

128

π
ω2 +

160

3π
ω3 +

10

π
ω4 lnω +O(ω4)

]
,

· · · . (14)

Matrix models can be seen as a sort of “lattice models” for string theory. In the hypergeometric

function F
(
−n

2 ,
3
2 , 3;

1
1+ω

)
for n being odd, the logarithmic singular terms can be regarded

as universal parts relevant to “continuum physics”, whereas polynomials of ω as nonuniversal
“lattice artifacts”.

3.2. Eigenvalue distribution with source

In computing higher-point correlators
⟨∏K

i=1
1
N tr ϕni

⟩
C,0

at the vacuum with general filling

fraction (ν+, ν−), it is useful to reduce them to those at the vacuum with (ν+, ν−) = (1, 0). We
can show ⟨

K∏
i=1

1

N
tr ϕni

⟩(ν+,ν−)

C,0

= (ν+ − ν−)
♯

⟨
K∏
i=1

1

N
tr ϕni

⟩(1,0)

C,0

(15)

up to K = 3, by explicit calculations. Here, the suffix “C” means taking a connected part. The
superscripts (ν+, ν−) and (1, 0) are put to clarify the filling fractions of the vacua at which the
expectation values are evaluated, and ♯ counts the number of odd integers in {n1, · · · , nK}.

In order to obtain higher-point correlators of 1
N tr ϕp (p = 1, 2, · · ·), we introduce source terms∑∞

p=1 jp tr ϕ
p to the partition function:

Zjk =

∫
dN

2
ϕ e

−N tr

[
1
2
(ϕ2−µ2)2−

∑∞
p=1

jpϕp
]
det (ϕ⊗ 1+ 1⊗ ϕ) . (16)

In the large-N limit, the eigenvalue distribution ρj(x) satisfies the saddle point equation∫
dy ρj(y)

(
P

1

x− y
+ P

1

x+ y

)
= x3 − µ2x−

∞∑
p=1

pjp
2
xp−1. (17)

Let us consider the case of the filling fractions (1, 0) with the support of ρj(x) [aj , bj ] (0 < aj <
bj). We change variables as

x2 = A+Bξ, y2 = A+Bη with A ≡
a2j + b2j

2
, B ≡

b2j − a2j
2

, (18)
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and put ρ̃(η) ≡ B
2yρj(y), to simplify (17) as

1

B

∫ 1

−1
dη ρ̃(η) P

1

ξ − η
=

1

2
(A− µ2 +Bξ)−

∞∑
p=1

pjp
4

(A+Bξ)
p
2
−1 (19)

for ξ ∈ [−1, 1], where ρ̃ is normalized by
∫ 1
−1 dηρ̃(η) = 1.

We act
∫ 1
−1 dξ

√
1− ξ2 P 1

ζ−ξ to both sides of (19), and apply the formula

∫ 1

−1
dy
√
1− y2 P

1

x− y
P

1

u− y
= −π + π2

√
1− u2 δ(u− x) (20)

for x, u ∈ [−1, 1]. Consequently,

ρ̃(ζ) =
1

2π

1√
1− ζ2

[
2− (A− µ2)Bζ −B2

(
ζ2 − 1

2

)

+
∞∑
p=1

pjp
B

2π

∫ 1

−1
dξ
√
1− ξ2 P

1

ζ − ξ
(A+Bξ)

p
2
−1

 .
(21)

The condition ρ̃(ζ = ±1) = 0 determines A and B as

A = µ2 +
∞∑
p=1

jp
p

2
(A+B)

p
2
−1F

(
−p
2
+ 1,

1

2
, 1;

2B

A+B

)
, (22)

B = 2

1 + ∞∑
p=1

jp
4

p

2

(
p

2
− 1

)
B2(A+B)

p
2
−2F

(
−p
2
+ 2,

3

2
, 3;

2B

A+B

)1/2 ,
(23)

from which A and B are obtained iteratively with respect to {jp}. Up to the first order of {jp},

A = µ2 +
∞∑
p=1

jp
p

2
(2 + µ2)

p
2
−1F

(
−p
2
+ 1,

1

2
, 1;

4

2 + µ2

)
+O(j2), (24)

B = 2 +
∞∑
p=1

jp
p

2

(
p

2
− 1

)
(2 + µ2)

p
2
−2F

(
−p
2
+ 2,

3

2
, 3;

4

2 + µ2

)
+O(j2),

(25)

where O(j2) means a quantity of the quadratic order of {jp}.

3.3. Planar two-point functions (bosons)
Let us express the planar expectation value of O under the partition function with the source

terms (16) as ⟨O⟩(j)0 . The cylinder amplitude at the vacuum with the filling fraction (1, 0) is
given as⟨

1

N
tr ϕp

1

N
tr ϕq

⟩(1,0)

C,0
=

∂

∂jp

⟨
1

N
tr ϕq

⟩(j)

0

∣∣∣∣∣
{jp}=0

=
∂

∂jp

∫ 1

−1
dζ (A+Bζ)

q
2 ρ̃(ζ)

∣∣∣∣∣
{jp}=0

. (26)
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Combining (26) and (15) leads to the result for general filling fraction. In what follows, we
omit the superscript (ν+, ν−) of the correlators when there is no possible confusion. It turns out
that the amplitudes are quadratic forms of the hypergeometric functions. For both of p and q
even, they are polynomials of ω independent of (ν+ − ν−), which is expected from the c = −2
topological gravity. When p and q are odd and even respectively,⟨

Φ2k+1
1

N
tr ϕ2ℓ

⟩
C,0

∼ (ν+ − ν−)(const.)ω
k+1 lnω. (27)

When both of p and q are odd,

⟨Φ2k+1Φ2ℓ+1⟩C,0 ∼ −(ν+ − ν−)
2 1

2π2
1

k + ℓ+ 1

(2k + 1)!

(k!)2
(2ℓ+ 1)!

(ℓ!)2
ωk+ℓ+1(lnω)2. (28)

Here, in order to subtract nonuniversal contributions appearing in the form (nonuniversal part)×
(universal part), we took a basis of the odd-power operators mixed with lower even-power
operators:

Φ2k+1 =
1

N
tr ϕ2k+1 + (ν+ − ν−)

k∑
i=1

α2k+1,2i(ω)
1

N
tr ϕ2i (29)

with α2k+1,2i(ω) being a regular function at ω = 0. For example, we can explicitly construct the
basis for the first three operators by considering ⟨Φ1Φ1⟩C,0, ⟨Φ1Φ3⟩C,0, · · ·, ⟨Φ5Φ5⟩:

Φ1 =
1

N
tr ϕ,

Φ3 =
1

N
tr ϕ3 − (ν+ − ν−)

4

π

(
1 + ᾱ

(1)
3,2ω +O(ω2)

) 1

N
tr ϕ2,

Φ5 =
1

N
tr ϕ5 − (ν+ − ν−)

4

π

(
1 + ᾱ

(1)
5,4ω +O(ω2)

) 1

N
tr ϕ4,

−(ν+ − ν−)
8

3π

(
1 + 3(1− ᾱ

(1)
5,4)ω +O(ω2)

) 1

N
tr ϕ2, (30)

where ᾱ
(1)
3,2 and ᾱ

(1)
5,4 are undertermined constants. They would be determined by considering

higher operators.
Note that (ν+−ν−) corresponds to an RR charge from the observation at the end of section 2:

Φ2k+1 measuring an RR charge.

3.4. Planar three-point functions (bosons)
Similar procedure to the case of the two-point functions can be used in computing three-
point correlation functions. It turns out that the result is expressed as cubic forms of the
hypergeometric functions. The first two amplitudes become⟨

(Φ1)
3
⟩
C,0

= (ν+ − ν−)
3
[

1

16π3
(lnω)3 +O((lnω)2)

]
,⟨

(Φ1)
2Φ3

⟩
C,0

= (ν+ − ν−)
3
[
2

π3
+

3

8π3
ω(lnω)3 +O(ω(lnω)2)

]
. (31)

3.5. Planar higher-point functions (bosons)
The results obtained for the one-, two- and three-point functions of operators Φ2k+1 (k =
0, 1, 2, · · ·) naturally suggest the form of higher-point functions as⟨

n∏
i=1

Φ2ki+1

⟩
C,0

∼ (ν+ − ν−)
n (const.)ω2−γ+

∑n

i=1
(ki−1) (lnω)n (32)
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with γ = −1. Besides the power of logarithm (lnω)n, it has the standard scaling behavior
with the string susceptibility γ = −1 (the same as in the c = −2 topological gravity) and the
gravitational scaling dimension k of Φ2k+1, if we identify ω with “the cosmological constant”
coupled to the lowest dimensional operator on a random surface [22, 23, 24].

3.6. Planar two-point functions (fermions)
The simplest two-point correlator of fermions is computed as⟨

1

N
tr ψ

1

N
tr ψ̄

⟩
C,0

=
1

2

∫
Ω
dx

1

x
ρ(x) = (ν+ − ν−)

1

2
(4(1 + ω))−1/2 F

(
1

2
,
3

2
, 3;

1

1 + ω

)
= (ν+ − ν−)

[
4

3π
+

1

π
ω lnω +O(ω)

]
(ω → +0), (33)

exhibiting singular behavior of lnω. SUSY invariance implies that this is equal to⟨
1
N tr (iB) 1

N tr ϕ
⟩
C,0

= 1
4
∂
∂ω

⟨
1
N tr ϕ

⟩
0
, interestingly which can be seen from (14).

Next, for
⟨

1
N tr ψ3 1

N tr ψ̄3
⟩
C,0

, we should consider an operator mixing similar to the bosonic

case (29). Let us take a new basis as

Ψ1 ≡ 1
N tr ψ, Ψ̄1 ≡

1

N
tr ψ̄,

Ψ3 ≡ 1
N tr ψ3 + (mixing), Ψ̄3 ≡

1

N
tr ψ̄3 + (mixing),

Ψ5 ≡ 1
N tr ψ5 + (mixing), Ψ̄5 ≡

1

N
tr ψ̄5 + (mixing),

· · · , · · · , (34)

where “mixing” means operators to be added so that⟨
Ψ2k+1Ψ̄2ℓ+1

⟩
C,0 ∼ δk,ℓ vk (ν+ − ν−)

2k+1ω2k+1 lnω (35)

with vk constants holds for k, ℓ = 0, 1. It turns out that the choice

Ψ3 =
1

N
tr ψ3 +

3√
2
(1 + ω +O(ω2))

1

N
tr {(iB − ϕ2 + µ2)ψ},

Ψ̄3 =
1

N
tr ψ̄3 +

3√
2
(1 + ω +O(ω2))

1

N
tr {(iB − ϕ2 + µ2)ψ̄} (36)

or

Ψ3 =
1

N
tr ψ3 − 3√

2
(1 + ω +O(ω2))

1

N
tr {(iB − ϕ2 + µ2)ψ},

Ψ̄3 =
1

N
tr ψ̄3 − 3√

2
(1 + ω +O(ω2))

1

N
tr {(iB − ϕ2 + µ2)ψ̄} (37)

does the job (35) with v0 =
1
π and v1 =

6
π .

The result (35) tells us that Ψ2k+1 and Ψ̄2k+1 have the gravitational scaling dimension k
same as Φ2k+1 besides the logarithmic factor.
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4. 2D type IIA superstring
The type II superstring theory discussed in Refs. [15, 16, 17] has the target space (φ, x) ∈
(Liouville direction) × (S1 with self-dual radius). The holomorphic energy-momentum tensor
on the string world-sheet is

T = −1

2
(∂x)2 − 1

2
ψx∂ψx −

1

2
(∂φ)2 + ∂2φ− 1

2
ψℓ∂ψℓ (38)

excluding ghosts’ part. ψx and ψℓ are superpartners of x and φ, respectively. Target-space
supercurrents in the type IIA theory

q+(z) = e−
1
2
ϕ(z)− i

2
H(z)−ix(z), q̄−(z̄) = e−

1
2
ϕ̄(z̄)+ i

2
H̄(z̄)+ix̄(z̄) (39)

exist only for the S1 target space of the self-dual radius. ϕ (ϕ̄) is the holomorphic (anti-
holomorphic) bosonized superconformal ghost, and the fermions are bosonized as ψℓ ± iψx =√
2 e∓iH , ψ̄ℓ ± iψ̄x =

√
2 e∓iH̄ . In addition, we should care about cocycle factors in order to

realize the anticommuting nature between q+ and q̄−. Supercurrents with the cocycle factors
are

q̂+(z) = eπβ(
1
2
pϕ̄−i

1
2
ph̄−ipx̄) q+(z), ˆ̄q−(w̄) = e−πβ(

1
2
pϕ+i

1
2
ph+ipx) q̄−(w̄), (40)

where β ∈ Z+ 1
2 , and pϕ, ph and px (pϕ̄, ph̄ and px̄) are momentum modes of holomorphic part

(anti-holomorphic part) of free bosons [6]. Then the supercharges

Q̂+ =

∮
dz

2πi
q̂+(z),

ˆ̄Q− =

∮
dz̄

2πi
ˆ̄q−(z̄) (41)

are nilpotent Q̂2
+ = ˆ̄Q

2

− = {Q̂+,
ˆ̄Q−} = 0, which indeed matches the property of the supercharges

Q and Q̄ in the matrix model.
The spectrum except special massive states is represented by the NS “tachyon” 2 vertex

operator (in (−1) picture):

Tk = e−ϕ+ikx+pℓφ, T̄k̄ = e−ϕ̄+ik̄x̄+pℓφ̄, (42)

and by the R vertex operator (in (−1
2) picture):

Vk, ϵ = e−
1
2
ϕ+ i

2
ϵH+ikx+pℓφ, V̄k̄, ϵ̄ = e−

1
2
ϕ̄+ i

2
ϵ̄H̄+ik̄x̄+pℓφ̄ (43)

with ϵ, ϵ̄ = ±1. Cocycle factors for vertex operators are introduced as

T̂k(z) = eπβ(pϕ̄+ikpx̄) Tk(z),
ˆ̄T k̄(z̄) = e−πβ(pϕ+ik̄px) T̄k̄(z̄),

V̂k, ϵ(z) = eπβ(
1
2
pϕ̄+i

ϵ
2
ph̄+ikpx̄) Vk, ϵ(z),

ˆ̄V k̄, ϵ̄(z̄) = e−πβ(
1
2
pϕ+i

ϵ̄
2
ph+ik̄px) V̄k̄, ϵ̄(z̄). (44)

Locality with the supercurrents, mutual locality, superconformal invariance (including the Dirac
equation constraint) and the level matching condition determine physical vertex operators.
As discussed in [17], there are two consistent sets of physical vertex operators - “momentum
background” and “winding background”. Let us consider the “winding background”. 3 The

2 In two dimensions, “tachyon” turns out to be not truely tachyonic but massless.
3 We can repeat the parallel argument for “momentum background” in the type IIB theory, which is equivalent
to the “winding background” in the type IIA theory through T-duality with respect to the S1 direction.
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physical spectrum in the “winding background” is given by

(NS, NS) : T̂k
ˆ̄T−k (k ∈ Z+

1

2
),

(R+, R−) : V̂k,+1
ˆ̄V −k,−1 (k =

1

2
,
3

2
, · · ·),

(R−, R+) : V̂−k,−1
ˆ̄V k,+1 (k = 0, 1, 2, · · ·),

(NS, R−) : T̂−k
ˆ̄V −k,−1 (k =

1

2
,
3

2
, · · ·),

(R+, NS) : V̂k,+1
ˆ̄T k (k =

1

2
,
3

2
, · · ·), (45)

where we take a branch of pℓ = 1− |k| satisfying the locality bound pℓ ≤ Q/2 = 1 [25]. We can
see that the vertex operators

V̂ 1
2
,+1

ˆ̄V − 1
2
,−1, T̂− 1

2

ˆ̄V − 1
2
,−1, V̂ 1

2
,+1

ˆ̄T 1
2
, T̂− 1

2

ˆ̄T 1
2

(46)

form a quartet under Q̂+ and ˆ̄Q−:

[Q̂+, V̂ 1
2
,+1

ˆ̄V − 1
2
,−1] = T̂− 1

2

ˆ̄V − 1
2
,−1, {Q̂+, T̂− 1

2

ˆ̄V − 1
2
,−1} = 0,

{Q̂+, V̂ 1
2
,+1

ˆ̄T 1
2
} = T̂− 1

2

ˆ̄T 1
2
, [Q̂+, T̂− 1

2

ˆ̄T 1
2
] = 0, (47)

[ ˆ̄Q−, V̂ 1
2
,+1

ˆ̄V − 1
2
,−1] = −V̂ 1

2
,+1

ˆ̄T 1
2
, { ˆ̄Q−, V̂ 1

2
,+1 T̄ 1

2
} = 0,

{ ˆ̄Q−, T̂− 1
2

ˆ̄V − 1
2
,−1} = T̂− 1

2

ˆ̄T 1
2
, [ ˆ̄Q−, T̂− 1

2
T̄ 1

2
] = 0. (48)

Notice that (47) and (48) are isomorphic to (2) and (3), respectively. It leads to
correspondence of single-trace operators in the matrix model to integrated vertex operators
in the type IIA theory:

Φ1 =
1

N
tr ϕ ⇔ Vϕ(0) ≡ g2s

∫
d2z V̂ 1

2
,+1(z)

ˆ̄V − 1
2
,−1(z̄),

Ψ1 =
1

N
tr ψ ⇔ Vψ(0) ≡ g2s

∫
d2z T̂− 1

2
(z) ˆ̄V − 1

2
,−1(z̄),

Ψ̄1 =
1

N
tr ψ̄ ⇔ Vψ̄(0) ≡ g2s

∫
d2z V̂ 1

2
,+1(z)

ˆ̄T 1
2
(z̄),

1

N
tr (−iB) ⇔ VB(0) ≡ g2s

∫
d2z T̂− 1

2
(z) ˆ̄T 1

2
(z̄), (49)

where the bare string coupling gs put in the right hand sides is to count the number of external
lines of amplitudes in the IIA theory. Note (49) is consistent with the identification in (8)–(11).
Furthermore, it can be naturally extended as

Φ2k+1 =
1

N
tr ϕ2k+1 + (mixing) ⇔ Vϕ(k) ≡ g2s

∫
d2z V̂k+ 1

2
,+1(z)

ˆ̄V −k− 1
2
,−1(z̄),

Ψ2k+1 =
1

N
tr ψ2k+1 + (mixing) ⇔ Vψ(k) ≡ g2s

∫
d2z T̂−k− 1

2
(z) ˆ̄V −k− 1

2
,−1(z̄),

Ψ̄2k+1 =
1

N
tr ψ̄2k+1 + (mixing) ⇔ Vψ̄(k) ≡ g2s

∫
d2z V̂k+ 1

2
,+1(z)

ˆ̄T k+ 1
2
(z̄) (50)

for higher k(= 1, 2, · · ·). Since the “tachyons” of the negative winding
∫
d2z T̂−k− 1

2
(z) ˆ̄T k+ 1

2
(z̄)

(k = 0, 1, 2, · · ·) are invariant under Q̂+ and ˆ̄Q−, they are expected to be mapped to
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{ 1
N tr (−iB)k+1} (k = 0, 1, 2, · · ·) perhaps with some mixing terms. We see in (50) that the

powers of matrices are interpreted as windings or momenta in the S1 direction of the type IIA
theory. This interpretation is similar to what is discussed in refs. [26, 27]: a positive power
k of a matrix variable in the Penner model correctly describe the “tachyons” with negative
momentum −k in the c = 1 string on S1. Furthermore, in the literature the positive momentum
“tachyons” are represented by introducing source terms of an external matrix via the Kontsevich-
Miwa transformation in the Penner model. In turn, it is natural to expect in our case that the

positive winding “tachyons”
∫
d2z T̂−k− 1

2
(z) ˆ̄T k+ 1

2
(z̄) (k = −1,−2, · · ·) in the type IIA theory

are expressed in a similar manner in the SUSY double-well matrix model.

Note that (R−, R+) operators are singlets under the target-space SUSYs Q̂+,
ˆ̄Q−, and appear

to have no counterpart in the matrix model side. Since the expectation value of operators
measuring an RR charge ⟨Φ2k+1⟩0 does not vanish as seen in (13), the matrix model is considered
to correspond to the type IIA theory on a nontrivial background of the (R−, R+) fields. We
may introduce the (R−, R+) background in the form of vertex operators, when the strength of
the background (ν+ − ν−) is small.

5. Correspondence between the matrix model and the type IIA theory
Correlation functions among integrated vertex operators in the type IIA theory on the trivial
background are given by⟨∏

i

Vi

⟩
=

1

Vol.(CKV)

∫
D(x, φ,H, ghosts) e−SCFTe−Sint

∏
i

Vi, (51)

where

SCFT =
1

2π

∫
d2z

[
∂x∂̄x+ ∂φ∂̄φ+

1

2

√
ĝR̂φ+ ∂H∂̄H + (ghosts)

]
,

Sint = µ1V(0,0)
B (0) ≡ µ1

∫
d2z T̂

(0)

− 1
2

(z) ˆ̄T
(0)
1
2
(z̄). (52)

The 0-picture (NS, NS) “tachyon” is given by

T̂
(0)

− 1
2

(z) = eπβ(iph̄−i
1
2
px̄) i√

2
eiH−i 1

2
x+ 1

2
φ(z),

ˆ̄T
(0)
1
2
(z̄) = e−πβ(−iph+i

1
2
px) i√

2
e−iH̄+i 1

2
x̄+ 1

2
φ̄(z̄). (53)

We consider correlation functions in the IIA theory on a nontrivial (R−, R+) background as
a form ⟨⟨∏

i

Vi

⟩⟩
≡
⟨(∏

i

Vi

)
eWRR

⟩
. (54)

The background WRR is invariant under the target-space SUSYs:

WRR = (ν+ − ν−)
∑
k∈Z

ak µ
k+1
1 VRR

k ,

VRR
k ≡


∫
d2z V̂k,−1(z)

ˆ̄V −k,+1(z̄) (pℓ = 1− |k|, k ≤ 0)∫
d2z V̂

(nonlocal)
−k,−1 (z) ˆ̄V

(nonlocal)

k,+1 (z̄) (pℓ = 1 + |k|, k ≥ 1)
(55)

with ak being numerical constants. Although the nonlocal operators in (55) with pℓ > 1 do not
satisfy the Dirac equation constraint on the trivial background, these operators are necessary to

8th International Symposium on Quantum Theory and Symmetries (QTS8) IOP Publishing
Journal of Physics: Conference Series 512 (2014) 012003 doi:10.1088/1742-6596/512/1/012003

10



make correspondence with the matrix model as we see later. Since the RR background possibly
change the on-shell condition, it would be acceptable. We treat the RR background for (ν+−ν−)
small as ⟨⟨∏

i

Vi

⟩⟩
≡
⟨(∏

i

Vi

)
eWRR

⟩
=

∞∑
n=0

1

n!

⟨(∏
i

Vi

)
(WRR)

n

⟩
, (56)

and the picture is adjusted by hand so that the total picture is equal to −2.
In computation of amplitudes in the type IIA theory, we consider the so-called s = 0

amplitude in the Liouville theory, which is interpreted as a bulk amplitude insensitive to details
of the Liouville wall [28]. It is somewhat similar to considering the leading nontrivial contribution
for small (ν+−ν−), because higher orders of (ν+−ν−) seems to detect a cigar geometry deformed
from the two-dimensional target space (Liouville direction)×(S1 with self-dual radius) [16]. The
direction to the Liouville wall corresponds to the direction to the tip of the cigar. Computation
in the Liouville theory [6] yields⟨

VB(0)Vϕ(k)VRR
ℓ

⟩
= −g4s δk,ℓ (2 lnµ1) ei2πβ(−k

2− 1
2
k+ 1

4
), (57)⟨

Vϕ(k1),Vϕ(k2)VRR
ℓ1 VRR

ℓ2

⟩
= g4s (δℓ1,k1+k2δℓ2,−1 + (ℓ1 ↔ ℓ2)) cL(2 lnµ1)

2

×π
2

(
(k1 + k2)!

k1!k2!

)2

e−iπβ{
∑2

i=1
(ki+

1
2
)2+
∑2

i=1
ℓ2i }. (58)

In the derivation of (58), we encountered the integral∫
d2z zαz̄ᾱ(1− z)β(1− z̄)β̄ = π

Γ(ᾱ+ 1)Γ(β̄ + 1)

Γ(ᾱ+ β̄ + 2)

Γ(−α− β − 1)

Γ(−α)Γ(−β)
(59)

with
α = ᾱ = k1 + k2, β = β̄ = −k1 − 1, (k1, k2 = 0, 1, 2, · · ·). (60)

This expression is indefinite. We computed it by regularizing as

α→ α+ ϵ, ᾱ→ ᾱ+ ϵ, β → β + ϵ, β̄ → β̄ + ϵ, (61)

where ϵ = 1
cLVL

. VL ≡ 2 ln 1
µ1

is the Liouville volume, and cL is a numerical constant. The point
of the regularization is preserving mutual locality of vertex operators due to the homogeneous
shifts.

Let us identify the coupling µ1 of the Liouville interaction Sint in (52) with the “cosmological
constant” ω by an appropriate shift of the Liouville coordinate. Then, it leads to the
identification

N tr(−iB) ∼=
1

4
V(0,0)
B (0), (62)

which is consistent to the last line in (49) (up to the choice of the picture) with

1

N
∼= gs. (63)

Also, introducing coefficients ck, dk, d̄k, we precisely express the correspondence in (49) and
(50) as

Φ2k+1
∼= ckVϕ(k), Ψ2k+1

∼= dkVψ(k), Ψ̄2k+1
∼= d̄kVψ̄(k). (64)

We put the overall normalization factor N in identifying the amplitudes in the matrix-model
side and those in the IIA theory side:

⟨N tr(−iB)Φ2k+1⟩C,0 ∼= N g−2
s

⟨⟨
1

4
V(0,0)
B (0) ckVϕ(k)

⟩⟩
. (65)
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The left hand side is calculated by using (13):

(LHS) = −1

4
∂ω ⟨Φ2k+1⟩0 ∼ −(ν+ − ν−)

2k

π

(2k + 1)!!

(k + 1)!
ωk+1 lnω. (66)

On the other hand, under a suitable choice of the picture, leading nontrivial contribution for
(ν+ − ν−) small to the right hand side is

1

4
N g−2

s ck ⟨VB(0)Vϕ(k)WRR⟩ =
1

4
N g−4

s ck(ν+ − ν−)
∑
ℓ∈Z

aℓ ω
ℓ+1

⟨
VB(0)Vϕ(k)VRR

ℓ

⟩
= −1

2
(ν+ − ν−)N ck ak ω

k+1(lnω) ei2πβ(−k
2− 1

2
k+ 1

4
), (67)

where (57) was used. The identification (65) leads to

N ĉkâk e
iπβ 3

4 =
2

π

(2k + 1)!

k!(k + 1)!
(68)

with
ĉk ≡ ck e

−iπβ(k+ 1
2
)2 , âk ≡ ak e

−iπβk2 . (69)

Next, let us consider the correspondence

⟨Φ2k1+1Φ2k2+1⟩C,0 ∼= N g−2
s ⟨⟨ ck1Vϕ(k1) ck2Vϕ(k2) ⟩⟩ . (70)

Leading nontrivial contribution to the right hand side is obtained from (58) as

N g−2
s ck1 ck2

⟨
Vϕ(k1)Vϕ(k2)

1

2!
(WRR)

2
⟩

=
1

2
N g−2

s ck1 ck2 (ν+ − ν−)
2
∑

ℓ1,ℓ2∈Z
aℓ1 aℓ2 ω

ℓ1+ℓ2+2
⟨
Vϕ(k1)Vϕ(k2)VRR

ℓ1 VRR
ℓ2

⟩

= (ν+ − ν−)
2N g2scL ĉk1 ĉk2 âk1+k2 â−1 2π

(
(k1 + k2)!

k1!k2!

)2

ωk1+k2+1 (lnω)2, (71)

while the result of the left hand side is given by (28). Comparing these, we find the same
dependence on ν± and ω for any k1 and k2. In addition, we have an equation:(

ĉk1
(2k1 + 1)!

)(
ĉk2

(2k2 + 1)!

)
(âk1+k2(k1 + k2)!(k1 + k2 + 1)!) = − 1

4π3
1

N cLâ−1
, (72)

which is solved as

ĉk = ĉ0 e
γk (2k + 1)!, âk =

â0 e
−γk

k!(k + 1)!
(k = 0, 1, 2, · · ·) (73)

with γ being a numerical constant and

ĉ20â0 = − 1

4π3
1

N cL â−1
. (74)

Remarkably, (68) is consistent to (73). It serves a quite nontrivial check of the correspondence.
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Furthermore, the correspondence of the amplitudes containing fermions⟨
Ψ1Ψ̄1

⟩
C,0

∼= N g−2
s

⟨⟨
d0Vψ(0) d̄0Vψ̄(0)

⟩⟩
,⟨

Ψ3Ψ̄3
⟩
C,0

∼= N g−2
s

⟨⟨
d1Vψ(1) d̄1Vψ̄(1)

⟩⟩
(75)

yields

d0d̄0 =
1

4
c0, d1d̄1 = − 3

π2
c0
a20
. (76)

It leads to the precise correspondence between the supercharges:

Q ∼=
d0
c0
Q̂+, Q̄ ∼=

d̄0
c0

ˆ̄Q−. (77)

So far, the correspondence seems consistent at the level of planar or tree amplitudes.
Furthermore, the consistency is checked in the torus partition function [6].

6. Nonperturbative SUSY breaking in the matrix model
In this section, we compute instanton effects in the matrix model which are nonperturbative in
1/N . Although such effects are of the order e−N and vanish in the simple large N limit, we will
see that they are nonvanishing in a double scaling limit

N → ∞, ω → 0 with t ≡ N2/3ω fixed. (78)

The partition function of the matrix model given by the action (1) is expressed as

Z =

∫
dN

2
ϕ e−N

1
2
tr(ϕ2−µ2)2 det(ϕ⊗ 1+ 1⊗ ϕ)

= C̃N

∫ ( N∏
i=1

dλi
)
△(λ)2

N∏
i,j=1

(λi + λj) e
−N
∑N

i=1
1
2
(λ2i−µ

2)2 , (79)

after integrating out matrices other than ϕ. Here, 1 is an N ×N unit matrix, λi (i = 1, · · · , N)
are eigenvalues of ϕ, and △(λ) denotes the Vandermonde determinant △(λ) =

∏
i>j(λi − λj).

C̃N is an numerical factor depending only on N given by

1

C̃N
=

∫ ( N∏
i=1

dλi
)
△(λ)2 e−N

∑N

i=1
1
2
λ2i = (2π)

N
2

∏N
k=0 k!

N
N2

2

. (80)

Contributions to the partition function are divided by sectors labeled by the filling fraction
(ν+, ν−) as

Z =
N∑

ν−N=0

N !

(ν+N)!(ν−N)!
Z(ν+,ν−) (81)

with

Z(ν+,ν−) ≡ C̃N

∫ ∞

0

ν+N∏
i=1

dλi

∫ 0

−∞

 N∏
j=ν+N+1

dλj

 (
N∏
n=1

2λn

) { ∏
n>m

(λ2n − λ2m)
2

}

×e−N
∑N

i=1
1
2
(λ2i−µ

2)2 . (82)
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Here, it is easy to see
Z(ν+,ν−) = (−1)ν−NZ(1,0), (83)

which leads to the vanishing partition function:

Z = (1 + (−1))NZ(1,0) = 0. (84)

In order for expectation values normalized the partition function to be well-defined, we regularize
the partition function by introducing a factor e−iαν−N with small α in front of Z(ν+,ν−). The
regularized partition function becomes

Zα ≡
N∑

ν−N=0

N !

(ν+N)!(ν−N)!
e−iαν−NZ(ν+,ν−) = (1− e−iα)N Z(1,0). (85)

Notice that calculations in perturbation theory of 1/N in sections 2 and 3 concern the partition
function in a single sector (Z(ν+,ν−)), in which such a regularization was not needed. On the
other hand, since nonperturbative contributions to be computed here possibly communicate
among various sectors of filling fractions, we should consider the total partition function (81)
and its vanishing value requires the regularization.

The expectation value of 1
N tr(iB) under the regularization (85) is expressed as

⟨
1

N
tr (iB)

⟩
α
=

⟨
1

N
tr (ϕ2 − µ2)

⟩
α
=

1

N2

1

Zα

∂

∂(µ2)
Zα =

⟨
1

N
tr (ϕ2 − µ2)

⟩(1,0)

(86)

due to a cancellation of the factor (1 − e−iα)N in (85) between the numerator and the

denominator. The regularized expectation value
⟨

1
N tr (iB)

⟩
α
is independent of α and well-

defined in the limit α → 0, and thus serves as an order parameter for spontaneous SUSY
breaking.

6.1. Orthogonal polynomials
Under the change of variables xi = λ2i − µ2, the partition function Z(1,0) defined in (82) reduces
to Gaussian matrix integrals

Z(1,0) = C̃N

∫ ∞

−µ2

(
N∏
i=1

dxi

)
△(x)2 e−N

∑N

i=1
1
2
x2i . (87)

It seems almost trivial, but a nontrivial effect possibly arises from the boundary of the integration
region. Ref. [21] mentions that the boundary effect is nonperturbative in 1/N .

Let us consider polynomials

Pn(x) = xn +
n−1∑
i=0

p(i)n x
i (n = 0, 1, 2, · · ·) (88)

with the coefficient of the top degree (xn) fixed to 1. The coefficients p
(i)
n are uniquely determined

so that the orthogonality relation

(Pn, Pm) ≡
∫ ∞

−µ2
dx e−

N
2
x2 Pn(x)Pm(x) = hnδn,m (89)
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is satisfied. Similar to the case without a boundary [29], we have recursion relations of the form

xPm(x) = Pm+1(x) + SmPm(x) +RmPm−1(x), (90)

hm = Rmhm−1. (91)

The one-point function is expressed as a sum of the coefficients Sn:⟨
1

N
tr (ϕ2 − µ2)

⟩(1,0)

=
1

N

N−1∑
n=0

Sn =
1

N2
e−

N
2
µ4

N−1∑
n=0

1

hn
Pn(−µ2)2, (92)

where the last equality follows from the identity∫ ∞

−µ2
dx

d

dx

(
e−

N
2
x2 Pn(x)

2
)
= −e−

N
2
µ4 Pn(−µ2)2. (93)

6.2. One-instanton contribution
In what follows, we take into account the boundary effects in an iterative manner. First, we
simply neglect the boundary effect by changing the lower bound of the integral (89) to −∞. The

orthogonal polynomials in this case, denoted by P
(H)
n (x), are given by the Hermite polynomials:

P (H)
n (x) =

1

(2N)n/2
Hn

√N

2
x

 (94)

with

Hn(x) ≡ (−1)n ex
2 dn

dxn
e−x

2
(95)

and coefficients

S(H)
n = 0, R(H)

n =
n

N
, h(H)

n =
√
2π

n!

Nn+ 1
2

. (96)

Note that the boundary x = −µ2 corresponds to the local maximum of the original double-
well potential 1

2(λ
2 − µ2)2, and k eigenvalues sitting at the local maximum give k-instanton

contribution as discussed in [30]. Computing the one-point function (92) by using the orthogonal
polynomials (94) gives rise to one-instanton contribution:⟨

1

N
tr (ϕ2 − µ2)

⟩(1,0)
∣∣∣∣∣
1−inst.

=
e−z

2

√
2πN3/2

1

2N (N − 1)!

[
HN (z)

2 −HN−1(z)HN+1(z)
]
, (97)

where

z ≡

√
N

2
µ2 =

√
2N (1 + 2ω), (98)

and the relation

n−1∑
k=0

1

2kk!
Hk(x)

2 =
1

2n (n− 1)!

[
Hn(x)

2 −Hn−1(x)Hn+1(x)
]

(99)

was used. Upon taking the double scaling limit in (97), the following asymptotic formula plays
a relevant role [7]:

e−x
2/2Hn(x) = π

1
4 2

n
2
+ 1

4n−
1
12

√
n!
[
Ai(s) +O(n−2/3)

]
(100)
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which is valid for large n with

x =
√
2n+ 1 +

s√
2n1/6

, (101)

and the Airy function is defined by

Ai(s) ≡ 1

2π

∫ ∞

−∞
dz e−isz−

i
3
z3 . (102)

Applying (100) to (97) yields the result in the double scaling limit (78):⟨
1

N
tr (ϕ2 − µ2)

⟩(1,0)
∣∣∣∣∣
1−inst.

= N−4/3
[
Ai′(4t)2 − 4tAi(4t)2 +O(N−2/3)

]
(103)

= N−4/3 1

32πt
e−

32
3
t3/2

[
1 +

∞∑
n=1

a(1)n t−
3
2
n

]
(104)

with a
(1)
1 = − 17

192 , a
(1)
2 = 1225

73728 , a
(1)
3 = − 199115

42467328 , · · ·. The double scaling limit (78) is expected
from the c = −2 topological gravity with the string susceptibility γ = −1 because the free
energy at the spherical topology behaves as N2ω2−γ = t2−γ . However, use of this expectation
is established in perturbative computations as pointed out in section 2, while it is nontrivial

that the nonperturbative contribution (103) obeys this scaling. The exponential factor e−
32
3
t3/2

in (104) indicates the weight of one-instanton configurations which remains finite in the double
scaling limit. Also, the power series with respect to t−3/2 can be regarded as perturbative
contributions to all orders around the one-instanton background.

6.3. Leading order two-instanton contribution
In order to compute effects from higher instantons, we consider corrections to replacing Pn by

P
(H)
n in the previous subsection:

Pn(x) = P (H)
n (x) + P̃n(x),

Sn = S(H)
n + S̃n, Rn = R(H)

n + R̃n, hn = h(H)
n + h̃n. (105)

Treating quantities with tildes at the linearized level gives rise to two-instanton effects. As a
result of the computation in [7], we have the two-instanton contribution:⟨

1

N
tr (ϕ2 − µ2)

⟩(1,0)
∣∣∣∣∣
2−inst.

= N−4/3 1

(64π)2 t5/2
e−

64
3
t3/2

[
1 +O(t−3/2)

]
. (106)

Both effects from one instanton (104) and from two instantons (106) are of the same order in N
and equally contribute in the double scaling limit to the quantity

N4/3
⟨

1

N
tr (ϕ2 − µ2)

⟩(1,0)

= N4/3 1

N

N−1∑
n=0

{
S̃(1)
n + S̃(2)

n + · · ·
}
. (107)

Thus, we can conclude that the nonperturbative effect dynamically breaks the supersymmetry
under wave function renormalization absorbing the factor N−4/3. As (86) suggests, the
renormalization factor can be understood from the fact that the renormalized one-point function
is obtained by the t-derivative of the free energy F(1,0) = − lnZ(1,0) with the factor (−1

4)
multiplied. The weight of the exponential in (106) is twice that of (104), as it should be from
the interpretation of a two-instanton contribution.
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7. Summary and Discussion
We computed planar correlation functions in the double-well SUSY matrix model, and discussed
its correspondence to two-dimensional type IIA superstring theory on (R−,R+) background
by comparing amplitudes in both sides. This is an interesting example of matrix models for
superstrings with target-space SUSY, in which various amplitudes are explicitly calculable.

It is interesting to examine the correspondence at deeper level in higher genus or higher point
amplitudes and in amplitudes containing special massive operators. Also, it is important to
discuss the correspondence in the off-shell formulation such as the hybrid formalism [18].

Next, we explicitly calculated nonperturbative instanton effects in the matrix model. In
particular, a closed form expression was obtained for full one-instanton contribution to the

one-point function
⟨

1
N tr(ϕ2 − µ2)

⟩(1,0)
including all perturbative fluctuations around the one-

instanton background. Also, presented was its analytic expression for the leading two-
instanton effect with respect to finite but large t. The result shows that the supersymmetry is
spontaneously broken by nonperturbative effects due to instantons. In particular, the instanton
effects survive in the double scaling limit, which implies that supersymmetry breaking takes
place by nonperturbative dynamics in the target space of the type IIA superstring theory.
Corresponding Nambu-Goldstone fermions are identified with 1

N tr ψ̄ and 1
N trψ associated with

the breaking of Q and Q̄, respectively. It is interesting to investigate dynamics of D-branes in
the type IIA theory and to reproduce the instanton contributions from the type IIA theory side.

Moreover, numerical results for full nonperturbative contribution to the one-point function
and the free energy F(1,0) are obtained in [7], where the numerical results up to N = 1, 000, 000
are extrapolated to N = ∞ in the double scaling limit. The result for the free energy seems
to be smooth even at t = 0 which corresponds to the strongly coupled limit of the type IIA
superstring theory. It might suggest the existence of an S-dual theory. It would be intriguing
to obtain an analytic expression for the full nonperturbative contribution and to identify the
S-dual theory.
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