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Abstract. The steady one-dimensional planar plasma sheath problem, originally considered by 
Tonks and Langmuir, is revisited. Two-fluid equations for cold ions and isothermal electrons, 
including terms for particle generation and electron inertia, have been numerically integrated 
together with Poisson equation.  The inclusion of electron inertia in the model allows us to 
obtain the value of the plasma floating potential as resulting from an electron density 
discontinuity at the walls, where the electrons attain sound velocity and the electric potential is 
continuous. Results from numerical computation are presented in terms of plots for densities, 
electric potential and particles velocities. Comparison with results from literature, 
corresponding to electron Maxwell-Boltzmann distribution (neglecting electron inertia), are 
also shown. 

The steady one-dimensional planar plasma sheath problem, originally considered by Tonks and 
Langmuir [1], is a classic problem in plasma physics which is still object of study and discussions [2-
22]. One of the universal assumptions in approaching the problem is to neglect electron motion and 
consider their distribution to be simply Maxwellian. By one side this simplify the equations, but when 
the floating plasma electric potential has to be evaluated, an unsatisfactory hypotheses for the electron 
flux to the walls has to be introduced, estimating it with the one side randomic flow associated to the 
electron Maxwellian distribution itself. Here, we want to present a model of the problem which allows 
properly taking into account electron inertia and estimating the plasma floating potential in a 
consistent way.  
 
Let us consider an infinite partially ionized plasma, with isothermal electrons and cold single ionized 
ions, embedded between two perfectly absorbing parallel walls. Since electrons have a greater 
mobility than ions, the walls should become negatively charged, in such a way that ions are attracted 
to them. The system should tend to a steady state with equal electron and ion fluxes (vanishing electric 
current density) with the walls at a characteristic value of electric potential, named floating potential. 
In order to maintain the steady state, some mechanism for electron and ion production is necessary, 
this will be ascribed to electron collisions with neutrals (assumed uniformly distributed and infinitely 
massive) and will be taken into account through a particle generation term proportional to some power 
  of the electron density (typically  = 0, 1 or 2) like G(x)= n0 [ne(x) /n0]

, where ne(x) represents the 
electron density, n0=ne(0) and   may be regarded  as the ionization rate divided by the electron 
density at the center of the configuration (x=0),  ion-electron collisions will be neglected. The problem 
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can be reduced to consider continuity and momentum conservation equations for electrons and ions 
together with Poisson equation. 
 
In the literature, following Tonks and Langmuir approach, the plasma is usually divided in two 
regions, one in which the plasma is almost neutral and ion electron pairs are produced, commonly 
called pre-sheath, and the sheath, close to the walls, where ion motion is supersonic (according to 
Bohm criterion [2]) and electron and ion densities differ appreciably.  This approach generate serious 
troubles when a matching between the two regions has to be done [3], but actually it is not necessary 
when the equations are solved numerically, as shown by Self [4], who numerically solved the whole 
problem with Maxwellian electron and free falling ions produced locally by electron collisions with 
neutrals and starting from rest. Here also a numerical treatment will be adopted and in order to 
compare the present approach to that of Self, we adopt a similar normalization for the different 
variables entering the problem.  
 
Using Gaussian units, n0  for the electron density at the middle of the configuration, Te and –e for the 
electronic constant temperature and charge, ݉௘,௜	for the electron/ion mass and k for the Boltzmann 
constant it is possible to define the following dimensionless dependent variables: densities ෤݊௘,௜ሺݕሻ ൌ
௡೐,೔ሺ௬ሻ

௡బ
 ; velocities ݑ෤௘,௜	ሺݕሻ ൌ ට

௠೐

௞ ೐்
 ሻ; particles flux densities (assumed to be equal for bothݕ௘,௜ሺݑ

species)  Γሺݕሻ ൌ ෤݊௘,௜ሺݕሻݑ෤௘,௜	ሺݕሻ	and electric potential ߶ሺݕሻ ൌ െ
௘	௏ሺ௬ሻ

௞	 ೐்
 (positive defined), where the 

dimensionless independent variable ݕ ൌ
௫

௅
 has been defined in terms of ܮ ൌ

ଵ

ఔ
ට
௞ ೐்

௠೔
 a typical discharge 

width. With such notation the corresponding two-fluid one-dimensional equations for continuity, 
momentum conservation and electric potential can be conveniently written [5, 6]: 
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Ion temperature has been neglected and a new constant ߙ ൌ ට
ఔమ௠೔

ସగ௡బ௘మ	
ൌ √ଶλವ

௅
 , where λ஽ ൌ ට

௞ ೐்

ସగ௡బ௘మ
 is 

the usual Debye length, has been introduced.  In order to start the set of equations it is necessary a 
charge density unbalance at the middle of the configuration (y=0). Assuming ෤݊௜ሺ0ሻ ൌ 1 ൅ , it is 
possible to relate α to   by imposing the vanishing of the first derivative of ෤݊௜ 	at y=0 in equation (2), 
which leads to =2ߙଶ.  
 
Equations (1-4) have been numerically integrated using the subroutine NDSolve of Wolfram 
Mathematica software [23], for a wide range of ߙଶ, =0, 1 and 2, and mi corresponding to the 
representative cases of hydrogen (H) or mercury (Hg). The integration is performed with boundary 
conditions imposed at the center and assuming symmetry about it. In all cases the integration has to be 

aborted when electrons reach the sonic isothermal velocity, i.e., ݑ෤௘ → 1, since in that limit 
ୢ௡෤೐
ୢ௬

 in 

equation (3) diverges. We ascribe to such singular behavior the attainment of plasma floating potential 
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at the wall, which depends on the chosen values of α and 
௠೔

௠೐
 . In the following, numerical results are 

presented for several cases and compared with Self results.  
 
In figure 1, dimensionless electric potential profiles are plotted as functions of y for H, three 
representative values for α (0.1, 0.01 and 0.001) and =1. In figure 2, dimensionless electric potential 
profiles are plotted as functions of y for H, α=0.01 and =0, 1 and 2. Filled curves represent results 
from the present model, while dashed ones indicate the corresponding solutions given by Self (for free 
falling ions and which do not suffer from any singularity in the range of integration). Our curves have 
to be stopped at the corresponding plasma floating potential owing to the attainment of sonic velocity 
by the electrons. The little displacement of the curves is due to the fact that in the present model ions 
lack any spread in their velocities.  
 

Figure 1: Potential profiles with characteristic 
values for α (0.1, 0.01 and 0.001) with =1 for 
atomic hydrogen (H). Filled curves correspond to 
the model described by the present work, while 
dashed curves indicate solutions given by Self.  

 

Figure 2: Potential profiles with characteristic 
values for  (0, 1 and 2) with α =0.01 for atomic 
hydrogen (H). Filled curves correspond to the 
model described by the present work, while 
dashed curves indicate solutions given by Self.  

 
It is interesting to note that Self solutions are independent of the ionic to electronic mass ratio for a 
given α, since he neglected electron inertia and used a convenient normalization of the spatial 
coordinate, so that the ionic mass disappeared explicitly from the characteristic equation of his model 
and the wall position (which does depend on the ionic to electronic mass ratio) is deduced a posteriori, 
equating the ion flux to the one side randomic flux of the Maxwellian electrons.  
 
In order to better show the differences between Self results and ours, in table 1 we compare values of 
the electric floating potential and wall position corresponding to H and Hg for some typical values for 
α and different . ߟ௪ and ݏ௪ correspond to Self values for wall dimensionless potential and 
dimensionless wall position, while ߶௪ and ݕ௪ correspond to ours. As it can be seen, differences are 
not really significant, but the inclusion of electron inertia allows us to define the floating wall potential 
in consistency with the model equations. 
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In figure 3, a typical result for ion and electron densities as function of position, corresponding to H, 
α=0.01 and =1, is shown. As it can be seen, ion and electron densities differ considerably at the wall 
position. Inside the figure, an enlargement of the detail for electron density close to the wall is shown. 
For comparison, when the electron density of our model is plotted together with that corresponding to 
a Maxwell-Boltzmann distribution, they practically overlap up to very close to the wall. The difference 
increases for larger values of α and diminishes for smaller α. The abrupt fall of the electron density of 
our model is due to the fact that electron velocity is reaching the sonic one at the wall. 
 
In figure 4 we show, for H and the same parameters as in figure 3, the ion and electron dimensionless 

velocity profiles. The ion velocity is multiplied by a factor ඥ݉௜ ݉௘⁄ 	 so that unity corresponds to ion 
sound velocity as defined in literature for cold ions. Comparing with figure 3, it is possible to 
appreciate that when the ionic velocity is close to unity, ion and electron density are still very close, 
while they are well separated when the ions reach the wall and their dimensionless velocity is about 
2.7 their sonic one. The electron velocity profile clearly shows how the electrons reach their thermal 
velocity at the wall. 
 

Table 1: Comparison for  dimensionless plasma wall potentials and dimensionless wall position  
obtained by Self (ݏ௪, ,௪ݕ) ௪) and by the present workߟ ߶௪) for H and Hg and different values of   
and  α. 
  

=0 
         H         Hg   
α  ߟ௪ ݏ௪ ߶௪ ݕ௪  ߟ௪ ݏ௪ ߶௪ ݕ௪ 

0.1  2.98 0.618 3.29 0.665  5.47 0.723 5.81 0.769 
0.01  3.41 0.398 3.78 0.417  6.03 0.414 6.39 0.432 
0.001  3.53 0.353 3.91 0.364  6.18 0.355 6.56 0.366 

  
=1 

         H           Hg   
α  ߟ௪ ݏ௪ ߶௪ ݕ௪  ߟ௪ ݏ௪ ߶௪ ݕ௪ 

0.1  3.29 0.748 3.65 0.791  5.94 0.893 6.30 0.925 
0.01  3.50 0.469 3.87 0.478  6.16 0.487 6.53 0.494 
0.001  3.55 0.415 3.93 0.416  6.20 0.417 6.58 0.418 

   
=2 

         H         Hg   
α  ߟ௪  ݏ௪ ߶௪ ݕ௪  ߟ௪ ݏ௪ ߶௪ ݕ௪ 

0.1  3.43 0.910 3.79 0.932  6.08 1.075 6.42 1.082 
0.01  3.54 0.568 3.91 0.557  6.19 0.586 6.56 0.574 
0.001  3.56 0.504 3.93 0.485  6.21 0.505 6.58 0.487 
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Figure 3: Dimensionless 
density profiles for electrons 
( ෤݊௘) and ions ( ෤݊௜) together 
with electron density due to 
Maxwellian distribution 
( ෤݊ெ). In order to show 
precisely the difference 
between our electron density 
and the commonly assumed 
Maxwell-Boltzmann 
distribution, we enlarged in 
the same figure a small 
region near the wall, where  
ୢ௡෤೐
ୢ௬

→ െ∞. 

 
 

 
 
Figure 4: Ion (upper curve) 
and electron (lower curve) 
velocities, normalized to 
their own sound velocities, 
from the center to the wall 
for H and the same 
parameters as in figure 3. As 
 ෤௘ approaches 1, theݑ
integration has to be aborted 
as electron density 
derivative, in the electron 
momentum equation, 
diverges.  
 

 
 

As it can be appreciated, the inclusion of electron inertia in the treatment of the classic plasma sheath 
problem introduces little changes to the floating plasma wall potential when compared with results 
from models that simply assume Maxwell-Boltzmann distribution for electrons and neglect their 
velocity. The differences are essentially due to an abrupt fall in electron density close to the end of the 
discharge, while the velocity with which electrons impinge on the wall is the same (insofar as electron 
temperature is maintained constant). In our model, electrons attain their sonic speed at the wall, and 
then a shock should build up there, where electron density and velocity approach discontinuities while 
the electric potential is continuous. Such description may be a physically attractive alternative to the 
usual assumption of equating the ion flux to the one side randomic electron flux. 
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