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Abstract. We describe the model for excitation of ocean surface gravity waves by the wind 

blowing away from the shore. Numerical simulation shows that wave turbulence behaviour can 

be split in time into two different physical regimes: classical and non-classical one. The 

classical regime corresponds to self-similar solution developing for the characteristic times 

defined by ratio of the channel width to characteristic advection velocity of the wave field. The 

non-classical regime is happening later in time when the energy starts to reflect from the 

opposite boundary condition and corresponds to energy advection against the wind. It exhibits 

itself in waves generating predominantly parallel to the shore line, tending to slant toward the 

shore, as approaching to the beginning of the fetch, at 15 degrees. 

1.  Model description 

We study kinetic equation for waves (Hasselmann equation [1]) for energy spectral density ),,( tkr


 , 

describing nonlinear waves propagation in geometric optics approximation: 
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for the simplified, but real physical situation, which includes the most important component of the 

general statement - non-stationarity in time, advection, exact nonlinearity nlS , wind forcing term 

windS  and wave dissipation term dissS  due to wave-breaking.  

Such simplified formulation is called the limited fetch wind growth situation, where Hasselmann 

equation is reduced to 
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where x is the spatial coordinate, orthogonal to the shore, and θ is the angle between individual 

wavenumber k and the axis x. This situation is presented schematically on the figure 1: 
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Figure 1. Schematic description of the energy fluxes along the 

fetch in real and Fourier spaces. 

Неre black axis presents the real space axis x orthogonal to the shore line, the red and green 

cylinder show Fourier space of the system. Red part of  the cylinder corresponds to the positive 

advection velocity in front of time derivative of Hasselmann equation (2) (red arrow is directed away 

from the shore), while green part of the cylinder corresponds to negative advection velocity (green 

arrow directed toward the shore), in correspondence with the cos  in equation (2). Such schematic 

picture suggests that limited fetch growth consists of essentially three different processes happening in 

real and Fourier spaces: (i) energy advection away the shore in real space (red tube); (ii) energy 

advection toward the shore in real space (green tube); (iii) nonlinear interaction of the waves between 

red and green parts of the tube in Fourier space for any given point of the fetch and time. 

It is important to use proper boundary conditions for the solution of Caughy problem. We used zero 

value of the wave field for the red portion of the tube on the left boundary a green portion of the tube 

on the right boundary. For green portion of the tube on the left and red portion of the tube on the right 

we used the free energy flux boundary conditions. Physically, such choice of the boundary conditions 

corresponds to simulation of the waves excitation in the strait of final width by uniform wind blowing 

orthogonally to the shore.  

For the solution of equation (2) we need to know the source terms in its right-hand side. The 

procedure of exact calculation of nlS  term is well-known and given by Webb-Resio-Tracy algorithm 

[2]. The parameterization of the wind input term inS  is given by (see [3]) : 
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and is based on the fact that equation (2) has self-similar solution [3] 

)( qqp xFx                                                                                                                                   (4) 

with parameters 

10

3
q ,  1p                                                                                                                       (5)  

along with the fact of fitting the experimental data by specific regression line, see [4], [5]. The 

contribution of the dissipation term dissS  was calculated similar to [5], where white-capping 

x=0 
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dissipation term was introduced implicitly through 
5f   (


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2
f  ) energy spectral tail stretching in 

frequency range from  1.1df  to 0.2max f . 

 

2.  Numerical experiments 

We solved Cauchy problem for the Eq.(2) with the following set parameters 

 Fetch size 40 km 

 Number of nodes 40 

 72 logarithmic frequencies 

 36 points angle resolution 

 Wind speed sec/510 mU   

which translates into: 

 Characteristic angular frequency   sec/2/ 10 radUgcr   

 Characteristic linear frequency Hzf 1.10   

 Dimensionless fetch  
4

2

10

106.1  g
U

L
  

       Initial conditions were chosen in the form of low-amplitude noise in the red part of the Fourier 

space and zero in the green part of the phase space cylinder (see figure 1). 

           Figure 2 represents total energy of the fetch as a function of time. One can see that energy growth 

evolution can be split into two parts -- first of relatively fast growth for time less than 4 hr, and the 

second part of relatively slow growth.  

 

 
Figure 2.   Total energy of the fetch as a function of time. 
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Comparison of the phase space distributions of the spectrum for t=2hr ( see figure 5 a,b ), and  t=24hr 

(see Fig.6 a,b) shows qualitative difference in their shape, too.  

      For earlier times t=2hr the shape of the spectrum has the form of the single hump, growing with 

the distance from the shore along the fetch. For later time t=24hr the shape of the spectrum is more 

complex: besides classical single-hump energy spectrum, growing away from the shore, one can see 

side satellites in the form of spikes, corresponding to waves propagating along the shore.  

      Furthermore, the direction of those waves propagating along the shore is getting slanted toward the 

shore with the distance diminishing toward the shore. Closer to the shore, the waves are propagating at 

15 degrees toward the shore line. This observation is quite remarkable: it means that long enough 

excitation of the waves in time by the wind blowing away from the shoreline finally excites the waves 

coming against the wind toward the shore. 

      Figure 3 represents distribution of energy along the fetch for different times. One can see that 

energy behavior for time less than 4 hr is described by threshold-like behaviour propagating along the 

fetch, in correspondence with [6].  

 

 
 Figure 3. Energy distribution along the fetch. Dotted line -- linear function. 

 

 

              At time around 4 hr, the energy growth is approximated by linear function of the fetch distance. 

This dependence was predicted in [7] through self-similarity analysis: it was shown that for fetch-

limited self-similar solution the dimensionless energy a
U
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 . For time t = 4 hr,  we get 

from numerical simulation results
7104.2 a . Table 1 represents experimental data (see [7] ) on 

measuring  the constant a for different experiments. One can see good correspondence of our 

numerical simulation and experimental predictions in table 1: 
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Experiment  a 

Nakata Bay (Mitsuyasu et al., 1971) 2.89 × 10−7 

JONSWAP (Hasselmann et al., 1973) 1.6 × 10−7 

Lake St. Clair (Donelan et al., 1992) 1.7 × 10−7 

Bothnian Sea (Kahma, 1981) 2.6 × 10−7 

Table 1. Values of the constant a for different experiments  
 

Figure 4 shows mean frequency distribution along the fetch for different moment of time less than 4 

hr. One can see that the portion of the "threshold-like" function is closely described by self-similar 

solution  (4)-(5) : 

 
 Figure 4. Logarithm of mean frequency distribution as a function of the  

logarithm of fetch for four different moments of time: 1 hr, 2 hr, 3 hr and 

4 hr.  Solid line - self-similar prediction q=0.3 from equations (4)-(5) 

 

 

3.  Conclusion 

All the above facts clearly show that limited fetch growth in the channels of final width can be split in 

time into two different physical regimes.  

       The first regime corresponds to self-similar solution developing for the characteristic times 

defined by ratio of the channel width to characteristic advection velocity of the wave field and could 

be called classical. This regime corresponds mainly to energy advection in the red part of the cylinder 

on figure 1.  

       The second regime is happening later in time when the energy starts to propagate from the 

opposite boundary condition and corresponds to energy advection against the wind in the green 

cylinder on figure 1. It exhibits itself in waves generating predominantly parallel to the shore line, 

tending to slant toward the shore, as approaching to the beginning of the fetch, at 15 degrees. 

       One of the most important results of our experiments is the possibility of generation of wind 

waves against the wind due to nonlinear effects. 
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 Figure 5a. Spectral energy distribution as a function of frequency f and angle   at the fetch 

distances 2 km, 14 km, 26 km, 38 km for time 2hr. 
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Figure 5b. Spectral energy distribution as a function of frequency f and angle   in 

polar coordinates at the fetch distances 2 km, 14 km, 26 km, 38 km for time 2hr. 
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Figure 6a.  Spectral energy distribution as a function of frequency f and 

angle   at the fetch distances 2 km, 14 km, 26 km, 38 km for time 24.47 hr. 
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Figure 6b.  Spectral energy distribution as a function of frequency f and angle  in 

polar coordinates at the fetch distances 2 km, 14 km, 26 km, 38 km for time 24.47 hr. 
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