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Abstract. Under analytical and numerical study are the kinetic phenomena inherent for
nonlinear oscillations in 1D diodes in which charged particles are supplied from an emitter
and move with no collision in the interelectrode spacing. An original numerical method (E, K
code) is used to build up the ion and electron velocity distribution functions as well to study
the structures forming in the course of the nonlinear oscillations both in the vacuum diode with
monoenergetic electron beam and in the Knudsen diode with surface ionization. The oscillations
are shown to occur owing to the Bursian-Pierce instability.

Time-dependent processes occurred in planar plasma diodes are considered. We suppose that
the electrons and ions with a prescribed velocity distribution functions (DF) leave the emitter
surface and travel collisionlessly between electrodes (the Knudsen regime) at a self-consistent
electric field. Two type of devices are considered:

1. The vacuum diode with no ions and DF of the emitted electrons being near the
monoenergetic one (the Bursian diode),

2. The Knudsen diode with surface ionization, where the emitted electrons and ions have the
half-Maxwellian DF (the KDSI).

The devices exhibit the large amplitude oscillations of the electron current across the diode
when a current of the entered electrons exceeds a certain threshold value. The paper presents a
theory of such oscillations.

1. Numerical code

The highly nonlinear oscillations arisen in the diode are accompanied by an intense energy
exchange between charged particles (electrons and ions) and the time-dependent electric field.
Such process results in a strongly non-equilibrium DF and even its disruption. In order to
describe correctly such processes the kinetic and Poisson’s equations should be solved. Such
a problem can be solved analytically only for very particular cases. Therefore, we solve this
problem numerically.

The kinetic part of the problem is the most difficult one. The best known and used in
nowadays plasma simulations are codes based on plasma model as a system of macroparticles
(see, e.g., XPDP1 code [1]). These codes, however, have a disadvantage of being rather noisy,
which is mainly due to smaller number of particles within each cell. They are presented as
rather high-speed ones. However, as it is shown in Reference [2], only a strong decrease in size
of space and time steps of computational grid and, consequently, an appreciable increase in the
number of macroparticles makes it possible to obtain the reliable results with XPDP1 code, in
particular, in situations involving the particle reflection.
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We have developed a new numerical code, which is called the E, K code in the literature
[3]-[6]. The code involves the fact that, in the collisionless case, the relationship takes place:

F(r, (1), u(r)) = f (70, wo). (1)

Here f and f; are the DF at the point (¢, 7) and at the emitter, respectively, ((7) = ¢(7; 7o, uo),
u(T) = u(r;70,u0), and ((79) = uop. In calculating the DF at the time 7 = ¢, the electric field
at all the points of the interelectrode gap is known at all preceding times, i.e., over entire time
interval (0, ). The values of the field distribution (¢, {) at the nodes of the spatio-temporal mesh
are stored in computer memory. Calculating the DF at a mesh node is reduced to computing a
number of the trajectories of test particles.

The main feature of the method is that the trajectory of each particle is calculated backward
in time until it reaches the electrode surface. As a result, from a given arrival velocity u', the
velocity u and time 7} at which a particle is injected from the emitter are determined, as well
as the value of the DF at the velocity u'. Next, the code gives the trajectory for a new arrival
velocity u? = u' + Au, and so on. The velocity step Au is chosen so that the difference between
the values of the DF at the neighbouring trajectories does not exceed a given value:

|f0+(7_017u(1)) _f(;L(Tgau%” <é&y. (2)

As a result, the step Aw is chosen automatically from the gradient of the DF. This choice of Au
provides the required accuracy in the calculation of the DF and its moments and, in particular,
ensures a high accuracy in the determination of the points in which the DF has discontinuities.

In calculating the trajectories, the electric field strength within each cell is approximated by
a linear function of the coordinate and time, and the position of a particle and its velocity are
calculated as the power series:

e(1,¢) = Ao+ Bo(t —11) + [A1 + Bi(t — 11)] - C,

(= ZGS(T—Tl)S, U:ZSGS(T—Tl)S_l. (3)
s=0 s=1

For the coefficients ag, the simple recurrence relations were obtained:

aOZZ, ale,
agy = —(Ap + Ay - ap)/2,
CL3:—(BO—|—B1'CL0+A1'CL1)/6, (4)

as=—(By...a5_3+ A1 -as_2)/[s(s—1)], s>4.

Here, Z = ((m1) and U = ¢(71). This method for calculating the trajectories ensures that the
electric field is continuous when the boundaries of the cells are crossed — a circumstance that
is especially important for the trajectories of reflected particles — and simultaneously provides
high accuracy in the calculation of the parameters of the trajectories.

In Reference [7], E, K code was checked for several electric fields, which allow to obtain
analytical formulas for trajectories of particles, as well as for self-consistent time-dependent
processes, which are described by analytical theory [8]. All cases under consideration
demonstrated high accuracy of the code. Comparison of E,K code and XPDP1 code shown,
that the former exceed considerably XPDP1 code in accuracy [7]. Besides, in order to obtain
reliable results using XPDP1 code one has to make an average over a large number of time steps.
However, its value is a free unknown parameter.
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2. The Bursian diode

About 30 years ago, the vacuum diode with directed electron beam attracted an attention in
connection with the creation of high power microwave generators, such as vircator, reditron, and
so on. Under certain conditions, a potential barrier, reflected a portion of electrons, is formed,
named the virtual cathode (VC), and highly nonlinear oscillations arise in the diode.

2.1. Steady solutions
In plasma diodes with an electron beam it is convenient to use the kinetic energy of the electrons
at the emitter W; and the beam Debye length A\p as energy and length units, respectively [9]:

2¢gWy 1/2 _ 86(2) 14 W,?M N -2 ‘/;)3/4
s~ 0.3238- 10 7
Jb Jb

Ap = [ [em], Wy = mu/2. (5)

e2ng e2m
Here, the current density of the beam J, and the acceleration voltage Vj, = W}, /e are expressed
in amperes per square centimeter and volts, respectively.

The steady solutions of the Bursian diode are determined only by two dimensionless values:
an inter-electrode distance 0 = d/Ap and the external voltage Vi = e®¢/(2W}).

The PD with a single potential minimum is typical for the steady solutions of the diode.
When the minimum potential |7,,| turns into the initial electron energy, a portion of electrons
is reflected and returns to the emitter. This is the solution equipped with a virtual cathode. It
names a solution of electron reflection. If Vi is fixed, the steady solutions lie on the dependence
£0(d) on the {eg,0} plane (Figure 1). The branches 1 and 2 correspond to solutions without
electron reflection, and 3 — with reflection [9].

A stability of steady solutions without reflection with respect to the small perturbations has
been studied by using a dispersion equation. The solutions lay on branch 1 are stable, whereas
those on branch 2 are unstable. However, there is no dispersion equation for solutions with
reflection. We have investigated the stability properties of such solutions with E, K code [6]. In
calculations, the time scale is selected to be the time needed an electron to overcome Ap. The
code is the exact one giving an opportunity to determine the eigenvalues (growth rate I' and
frequency ) of the main mode from simulation of a small perturbation evolution.

We have calculated such process for a set of gap values, and obtained the dependencies of
eigenvalues on §. One can see from Figure 2, that a threshold §; exists below which all solutions
on branch 3 are stable to small electron perturbations. For § > d;, the steady solutions are
unstable to the small perturbations. As J increases, the alternation of regions of stable and
unstable steady solutions occurs. Thus, the steady-states with a partial reflection of electrons
from the VC can be realized in the Bursian diode.

2.2. Nonlinear oscillations
In order to see the process termination when a small perturbation increases, it is necessary to
study its nonlinear stage. We studied a regime with the VC at zero external voltage.

In numerical simulations, the time step was A7 = 0.05; the coordinate step was A( = §/N
with NV = 200; and the electron DF at the emitter was chosen to be

I (o) = (22)7'0© [A% = (1 - ug)?| (6)

with a small velocity spread A.

At each time moment 7P, firstly the DF of electrons is calculated with E, K code. Then
having calculated the DF and electron density, we solve the Poisson’s equation with the following
boundary conditions for the potential:

n(0) =0, n(6) ="Ve. (7)
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Figure 1. The dependence €9 on 6. Figure 2. Dispersion curves; Vo = 0,
Curve - Vo =0, 11 --0.4, 3 - 4+0.2. A = 0.02.

The problem reduces to solving the set of linear algebraic equations
EZ = Ei—l - (An)za
m=mb oy —(1/2) (h+eb ) (E+ ), (8)
=0, % =Ve.

Here, 1 < k < N and (An)} is the electron charge in the layer (¢} _;,¢}), which is calculated
with allowance for the electron fluxes v through the cell boundaries,

(An)y = (An)y ™t — (1/2) (77 = 1) (Vo) + vy + 8 k). 9)

At each time step 7P, the self-consistent solution is achieved as follows. For the time 7P, the
electric field distribution is known only at all preceding time moments 7 < 7P~1, but not yet at
7 = 7P. The field is extrapolated to the time interval (77!, 77), and the DF and electron density
at the time 7P are then calculated. The density being known, the refined field distribution at the
time 7P is calculated and the density is recalculated for the new field. As a rule, it is sufficient
to carry out only one to two such iterations.

The nonlinear process ends, as a rule, with the periodic oscillations. The dependencies of
the potential n,, at the top of the VC on its position (,,, when growth of a small perturbation
finished, are closed curves (Figure 3,a-d) [10]. As the electrode gap increases, the shape of the
curve changes from elliptic (near the threshold) to nearly triangular. Figure 3 shows such curves
for the 1st instability region (d;, ;).

The E, K code gives an opportunity to plot the electron velocity DF and density n.(¢) at
any time with high accuracy. Figure 4,a shows the DF projection on the velocity-coordinate
plane at a fixed time. The DF has a very complicated structure. Integration of the DF over
velocities yields the electron distribution within the gap. Figure 4,b shows that the electron
density varies by several orders of magnitude. It has a sharp peak at the point corresponding
to the left boundary of the region from which the electrons are reflected.

For each instant of time, we can obtain such fine parameters of the process as a position (s
and potential 7y of the point corresponding to the maximum of the density distribution and
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to plot the attractor in the {nas, (as} plane (Figure 3,e-h). The attractor is a closed curve of
an oval shape. In analogy with the theory of finite-dimensional dynamic systems, we call such
a curve the limiting cycle. In Figure 3, the heavy dot within the cycle corresponds to a steady
solution. At the final stage of the process, the dependence 7y; on (3 winds onto the limiting
cycle from inside (Figure 3,g).
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Figure 3. Dependences 7,,((n) (a-d) and limiting cycles nas(Car) (e-h); § = 1.6 (a,e), 1.7 (b,f),
1.8 (¢,g), 2.0 (d,h). The fat dots show steady solutions.
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Figure 4. Projection of the electron DF onto the plane {u,(} at the time 7 = 134.6 (a) and
the corresponding electron density distribution (b); 6 = 3.1. The heavy dot in a density shows
the position of the top of a VC.

Further, we should check:

i) whether the relevant solutions are stable or not, and

ii) whether they are unique for given external parameters.

In order to solve these problems we selected the initial conditions responsible for the points
located beyond the cycles. In these processes, the dependence nys(¢ar) wound like a helix onto
the limiting cycle from outside (Figure 3,f). This cycle coincides with the limiting cycle obtained
in simulating the development of a small perturbation from the steady solution. Thus, in the
1st instability region, the steady limiting cycles correspond to the regime of nonlinear periodic
oscillations and each such cycle is unique.
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Figure 5. Two limiting cycles for § = 2.4.

We calculated a set of the transient processes started from initial conditions located beyond
the cycles, for the electrode distances beyond the instability threshold §;. We found that, in
these cases, the processes ended also with nonlinear periodic oscillations of the same type as
those in the 1st instability region.

In the 2nd instability region (512,53), we revealed a new class of oscillations of which
amplitudes are substantially smaller than that of the oscillations described above. In Figure
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5, the new cycle is shown as the minor oval. However, for these gap values, large-amplitude
oscillations exist also.

We found that, at certain times, the convective current density increases in a jump like
manner (Figure 6,a). The jump in the current develops on a time scale much shorter than the
electron time-of-flight through the electrode gap. Such behaviour of the current density stems
from the character of the evolution of the electron distribution in the electrode gap during the
oscillations. The reason is that, at the times when the height of the VC has a minimum, a fairly
large group of electrons overcomes the potential barrier. Further, these electrons form a sharp
front in their spatial distribution (Figure 6,b). The front moves toward the collector, and when
it reaches the collector, the convective current density increases sharply.

Figure 6. The convective current (a) and electron (b) density evolution during an oscillation
period.

2.8. Long-lived electrons

Earlier in numerical simulations an unusual phenomenon, being characterized for oscillations,
was revealed: existence of so-called long-lived electrons [11]. These are the electrons that reach
the VC, which serves as a potential barrier for them, and oscillate with it during several periods.
We have found a reason for the onset of long-lived electrons, and analysed their properties [10].
In order to study the features of the long-lived electrons we have considered a model of the
electric field, which describes properly trajectory of the VC oscillation:

n(¢7) = —a?/2[(Ch)? = (¢ = ()] — a*¢hkcos(Qr)C. (10)

Here, o = —2n9 /(¢%)2, 7Y and (9 are the height and the position of the VC top in the steady-
state case (k = 0), and the parameters 2 and  characterize the frequency and amplitude of the
VC oscillations. The quantity « is determined by the curvature of the PD in the vicinity of the
VC top. For an electron that is injected from the emitter with the velocity vg at the time 7y,
we obtain the following expressions:

. C(t) = Ay expla(t — 10)] + A_ exp|—a(t — 19)] + ¢ [1 + Br cos(Q7)], (11)
C(t)/a = A, explalpha(t — 10)] — A_ exp[—a(t — 70)] — ¢%, Bk sin(Qr).
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Here, B = (1+¢)™ !, ¢ = Q/a, AL = {C% F v/ + ¢/ Br cos [y F arctan(@)]} /2. These
formulas show that, at a(t — 79) > 1, the electrons can either overcome the potential barrier
and reach the opposite electrode (A4 > 0) or they can be reflected from the barrier and return
to the emitter (A4 < 0) that depends on the relationship between vy and 7. It is also seen that
a group of electrons exists that can oscillate in the vicinity of the VC for a fairly long time until
they fall into the 1st or the 2nd group. These are just long-lived electrons. The emitter values
of velocity vg and time 7y of such electrons lie in a very small vicinity of the universal curve

vy = al® {1 + V Bk cos [y + arctan(gp)]} . (12)

This relationship is deduced from the condition Ay = 0, and does not depend on parameters of
the arrival point (¢, 7).

Trajectories of long-lived electrons are determined by last term in formulas (11). Hence,
long-lived electrons are those beam electrons, the kinetic energy of which is close to zero when
they reach the vicinity of the potential minimum. As a result, such electrons are reflected from
the potential barrier, but they move slower than the VC (B < 1), which thus overtakes them, so
they again catch up with the barrier and are again reflected from it, and so on. It is the reason
why long-lived electrons exist. More over, any electron “lives” only a finite time. Indeed, the
formulas (11) contain an exponentially increasing term. Therefore electron trajectory is unstable
to small variations in the initial conditions. On sufficiently long time scales 7, this term will
become greater than the remaining terms and the electron will come to one of the electrodes,
no matter how close the point (vg, 79) is to curve (12) or how small the coefficient A is.

3. Nonlinear oscillations in the KDSI

The Knudsen diode with surface ionization (KDSI) is a collisionless, one-dimensional, single-
emitter plasma diode. The emitter serves as a source of electrons by Richardson emission and
ions by surface ionization of neutral alkali atoms. The emitted electron and ion DFs are the

half-Maxwellian ones. The Knudsen thermionic energy converter [12] and Q machine [13] are
examples of the KDSI.

3.1. Steady solutions

The self-consistent steady solutions of the KDSI are determined by three dimensionless values:
emitter neutralization ratio v = n?’+ /9 electrode distance 6 = d/\p, and external voltage
Vo = e®c/kTg. Typical PD exhibits a quasineutral plasma region with practically constant
potential, embedded between two space-charge sheaths adjacent to the electrodes. We have
analysed stability properties of such solutions in overneutralizated regime (v > 1), and built up
a boundary of the region of stable solutions (Figure 7) [14]. Fat points show data of experiment
carried out to determine the boundary beyond which the oscillations initiate [15]. One can see
the excellent agreement between our theory and this experiment.

3.2. Nonlinear oscillations

A number of experiments demonstrated the large amplitude oscillations of electron current in the
KDSI (see, e.g., [12, 13]). Their period is comparable with the ion transit time of the electrode
gap d. We have shown that the oscillations are characterized by the periodic sequences of two
types of stages: the slow (related to the slow motion of the ions) and the fast (compared with
the time for an electron to overcome the electrode distance) ones [4]. In calculating the slow
stage, we assume that the electrons overcome the gap d before the ions cross the distance of the
Debye length Ap. Then, we consider that to the moment when ions moved over distance Ap, the
electrons and electric field in the electrode gap have already a time to redistribute and conform



25th ITUPAP Conference on Computational Physics (CCP2013) IOP Publishing
Journal of Physics: Conference Series 510 (2014) 012046 doi:10.1088/1742-6596/510/1/012046

—

50

Figure 7. Boundaries of regions, contained
stable and unstable solutions; v = 5.

fﬂlﬁ 150 200 V;

=
)
=

with a given ion distribution. Therefore the time scale is selected to be the time needed an ion
to overcome Ap. The ion DF is calculated by F, K code.

At each time-step 7P, the electron and electric field distributions for known ion background
n;(7P, () are found from the stationary problem. In this case, an explicit expression for electron
density can be obtained for PD of any type. It depends on a potential value at the given
point, and also at the points of PD local minimum, being the points of electron reflection:
ne = ne(n,n',...,n!). Inserting the electron density in the Poisson equation, we reduce the
problem to solution of nonlinear ordinary differential equation of a 2nd-order:

—

d*n/d¢* = ne(n,n', ..., n) = ni(r%50) (13)
with boundary conditions:
n(0) =0, n(d) =Vc. (14)

As a rule, this problem has several solutions. The PDs that can be realized as well as their
stability properties, are analysed by the 1, e—~diagram technique [14].

During the slow stage, the ions are redistributed in the electrode gap. At certain instants
of this stage, the conditions of the Pierce type instability onset appear [16]: a potential jump
forms in the emitter sheath, which accelerates strongly the electrons, and electron beam with a
small spread in velocities propagates through the plasma. At such instants KDSI plasma differs
from the Pierce diode one only due to the ion background, through which the electron beam
goes. The ion background is nonuniform in the KDSI.

During the fast stage, the ion distribution may be considered as the steady one. And the
time scale is selected as the time needed an electron to overcome A\p. Self-consistent simulations
of this stage are similar to those in the vacuum diode. Figure 8,a is an example of calculation
of the electron transient process which finishes in a state of the VC (curve 4). The initial PD
is a distribution of the monotonic growth. Relevant state belongs to the boundary of a stable
region (curve 1). Figure 8,b shows the maximum deviation A® of a potential from the initial
one in time [17].

The instability gives an interesting physical phenomenon — a cut-off of current. It occurs in
the case when the electron transient process finishes in a state for which the PD with the VC
realizes: a region with negative potential forms at a distance from the emitter (Figure 9,a). As
a result a strong limitation of electron current, passing through the diode, occurs. Because a
time of VC formation is about the mean time-of-flight of the electrons over the diode gap, one
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Figure 8. Evolution of PD during the fast stage in the KDSI with v =5, § = 11.4, Vo = 5.

can speak that the current changes instantaneously in diode. This structure is stable. During
the slow stage it moves to the collector with a characteristic ion velocity ~ (2kTg/m;)"/? and
drives an electron current, passing through the diode. In Figure 9,b, these structures correspond
to the parts of the solid curves with the current density less than jg. The vertical dashed lines
denote the fast electron transitions. Oscillation period is about a time-of-flight of the thermal
ions over the diode gap, and modulation depth 8 = [jmaz(t) — jmin(t)] /Jmaz(t) ~ 0.5. These
facts are corroborated by experiments [12, 13].

J/7e
1.0F — r—v ™
\U
0.5+
(b)
1 1 1 1
0 10 20
t/ti

Figure 9. Evolution of a PD
during an oscillation period (a) and
of a current density to the collector
(b); vy =5, =16,V =5.

From the DP evolution during an oscillation period (Figure 9,a) one can see that, within
the time interval (12.7 < 7 < 16.4) to the right of a potential minimum, a double layer exists,
within which the potential changes by an amount of about an external voltage ®¢, and an
essential separation of charges occurs at the distance of several Ap. The electron current, of
which magnitude depends on a potential barrier height for electrons, passes through the layer.

Development of electron instability gives rise to a number of interesting physical phenomena.
For example, during the fast stage, a potential well is formed (Figure 9,a, 7 > 16.4) and
accumulation of potential energy occurs. Then, during a slow stage, the latter converts into
directed kinetic energy of the ions and thus results in ion acceleration up to relatively high
energy. More over, the ions as beams had a very small velocity spread (Figure 10,a), and the
ion kinetic energy localization occurs (Figure 10,b).
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Figure 10. Evolution of an ion DF at the collector (a) and of ion kinetic energy during an
oscillation period; v =5, § = 16, Vg = 5.

3.3. Collisionless trap of electrons in the potential well

The PD with a hump is a potential well for electrons (Figure 10,a). Self-consistent collisionless
electron trapping in the well, may result due to the energy exchange between electrons and the
time-dependent electric field arising during the well formation. Really, when the well depth
increases, an electron, moving in the well, loses its energy, to the electric field. With increasing
gap length, the energy losses growth, and a threshold gap d* exists, in exceeding which these
losses become larger than the initial energy of electron at the emitter. As a result, the electron
reflects from a potential barrier in the collector region, and turns out to be trapped in the
potential well [18].

The trapped electrons do not spread over the well as a time-independent structure, but they
are a dynamic structure: forming a localized spatial bunch with sharp fronts, which bounces
between the electrodes, being broaden, when passing the center region of the gap (Figure 11,a,
curve 2), and shrank in the vicinity of electrodes (curves 1 and 3).

During the process, a charge of the bunch electrons decreases due to some electrons get away
the electrodes. Such a time-dependent behaviour of the trapped electrons leads to oscillations
of the PD (Figure 11,b), so that the well depth oscillations also (solid curve), being less than
this one if the trapped electrons were absent (dashed curve). The electron trapping plays the
crucial role in self-consistent calculations of nonlinear KDSI dynamics.

4. Conclusion

Thus, as in the diode with the beam-like velocity distribution function of emitted electrons, as
in the Knudsen diode with surface ionization the large amplitude oscillations of the electron
current can exist. They arise when a current of the incoming electrons exceeds certain threshold
value which is of the order of the plasma beam Debye length. As a result, the Bursian-Pierce
instability develops resulting in a current cut off. During the oscillation process a set of nonlinear
structures form. For example, dynamical VC and DL exist, the long-lived and trapped electrons
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Figure 11. Spatial distribution of trapped electrons at three time moments (a) and evolution
of a well depth (b); § = 1.977.

appear, bunching charge particles occurs, and so on.

We proposed to create fast electron switches on the basis of theory of nonlinear oscillations
in the Bursian diode [8]. Results of this theory can be useful for microwave generators which
convert oscillatory energy of the self-consistent electric field into microwave radiation. Used
the theory of nonlinear oscillations in the KDSI we proposed new type of the themionic energy
converter which converts heat energy directly to alternate current power [19].
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