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Abstract. A consistent derivation of the model linearized collision operator for a
multicomponent system is presented. In these results an ambiguity in the choice of coeffi cients
is eliminated, in contrast to the BGK type models. A technique for reconstruction of the
model collision integral form based on a known expression for the model linearized operator is
proposed. It is shown that the model collision integral in the local (not complete) equilibrium
approximation does not contain a complicated exponential, that is common for the BGK type
integrals. Boltzmann’s H-theorem is proved for our model.
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1. Introduction
As it is well known the Balescu collision operator for plasma

IBALUa (p) =
∑
b

2e2ae
2
bnb

∂

∂pi

∫
kikjδ(kv − kv′)
k4 |ε(kv,k)|2

{∂fa
∂pj

fb − fa
∂fb
∂p′j
}dkdp′ (1)

satisfy general properties:
conservation laws: ∑

a

∫
ϕa(p)Ia(p)dp = 0, if ϕa(p) = 1, p,

p2

2ma
(2)

and Boltzmann’s H-theorem:

∂

∂t
H(t) = − ∂

∂t
S(t) =

∂

∂t

∑
a

∫
fa(p,t) ln fa(p,t)dp ≤ 0, (3)

where S(t) - is the entropy of the system.

∂

∂t
HBALU (t) = −

∑
ab

e2ae
2
bnanb

∫
kikjδ(kv − kv′)
k4 |ε(kv,k)|2

(k
∂ ln fa
∂p

fb − fak
∂ ln fb
∂p′

)2fafbdkdp
′dp ≤ 0.

(4)

The Balescu kinetic equations cannot be resolved exactly except for Maxwell molecules. In
this case the eigenfuctions of the collision operator are Hermite polynomials. In all other cases,
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the modeling approach is used. The most widely used model kinetic equation, especially in the
case of discrete simulation of gas and plasma dynamics, is the Bhatnagar, Gross and Krook
(BGK) model equation [1]. We recall that in the BGK model the collision term for the one-
component system is the deviation of the distribution function (d.f.) from the Maxwellian d.f.
whose parameters are the moments of the d.f.:

IBGK{f} = −ν(f − f0) (5)

where

f0 =
n

(2πmT )3/2
exp−m(v −V)2

2T
; (6)

and n(r, t) =
∫
fdp; V(r, t) = 1

n

∫
vfdp; T(r, t) =

∫ m(v−V)2
3n fdp are the local density, the

mean velocity and the temperature in energy units, respectively. This model term vanishes at
equilibrium and satisfies the conservation laws:∫

ϕ(p)IBGK{f}dp = 0, if ϕ(p) = 1, p,
p2

2m
(7)

and the Boltzmann’s H-theorem:

∂

∂t
HBGK(t) = ν

∫
(f − f0) log

f

f0
dp ≤ 0, (8)

The advantage of the BGK model is that the solution of the kinetic equation reduces to that
of a system of algebraic equations [2]. A weak point is that the model implies that the Prandtl
number (Pr) equals 1.
Holway and Cercignani [2, 3] independently introduced the so-called ellipsoidal statistical

model in order to take into account real Prandtl numbers by substituting the local anisotropic
Gaussian distribution for the local Maxwellian distribution:

f0 = nπ−3/2(detA)1/2 exp−
3∑

i,j=1

αij(vi−Vi)(vj−Vj) (9)

A = ‖αij‖ =
∥∥(Pr)−1(2T/m)δij − 2(1− Pr)pij/nPr

∥∥−1
In the problems of linear transport and fluctuations one usually uses the linearized form of

the BGK collision operator:

δÎ |h〉 = −ν
(
|h〉 −

5∑
α=1

|Ψα〉 〈Ψα|h〉
)
, (10)

where |h〉 is defined by f = f0 +δf = f0 (1 + h), and |Ψα〉 are the first five Hermite
polynomials.

One of first works dedicated to derivation of the linearized collision integral is the paper by
Gross and Jackson (GJ) [4]. Later, extension of the BGK kinetic model for the inclusion of
higher order matrix elements was discussed and it was applied to investigate the generalized
Enskog equation and the dynamic structure factor for gas and fluids [5-11]. The approximation
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consisted in taking into account exactly a finite part of the matrix operator, while the remaining
part was only represented by the diagonal matrix elements. In the present paper we do not
consider spatial inhomogeneities and assume the wave vector k = 0. But we do take into
account the non-diagonal components arising in the collision operator expansion with respect
to the complete system of polynomials in the quadratic approximation. Making use of these
non-diagonal elements allows us to obtain a new form for the model integral with the Spitzer
corrections taken into account. In the case of a Boltzmann gas of hard spheres these corrections
are insignificant.
A more grave situation arises in the case of many-component systems. According to the

Gross and Krook (GK) model [12], the collision operator has the form of the deviation of the
d.f. from a “mythical”exponent:

IGKa {fa} = −
∑
b

νab[fa −
na

(2πmaTab)3/2
exp−ma(v −Vab)

2

2Tab
], (11)

were the parametersVab and Tab are related linearly to the d.f. moments:

Vab = αaaVa + αabVb, Tab = βaaTa + βabTb, (12)

Coeffi cients αaa, αab, βaa and βab are chosen in such manner that both conservation laws
and balance equations for the momenta and energy for each component hold valid. Since the
number of equations that should be satisfied by the parameters of the model (for a five-moment
description of a two-component system there are four equations: 2 for the balance of moments
and 2 for the balance of temperature) is less than the number of unknown parameters (in this
approximation there are 5:νab; αaa; αab; βaa; βab), there is an arbitrariness in the choice of
parameters. Therefore there exist various modifications (see, for example, [13]) of the collision
model which correctly describe relaxation of the five moments. But, probably, the most dubious
point of the GK model is the complicated exponential dependence on the d.f. Recently, a new
type of G-K model for gas mixtures [10, 14] was proposed and Boltzmann’s H- theorem was
proven for this model.

2. Model Construction
2.1. One-component systems
To correct the BGK model, following Sirovich [15] we introduce two projection operators Ĥ and
N̂ satisfying

ĤN̂ = N̂Ĥ = 0; Ĥ + N̂ = Îd. (13)

Here Îd is the identity operator, Ĥ is the operator of projection onto the ’hydrodynamical
subspace’spanned by kets corresponding to the polynomials of the lowest order in the moment
variable. In the BGK model these kets are the first five polynomials which correspond to the
collisional invariants: density, momentum and kinetic energy. However, one may include in this
subspace polynomials of higher order. Their number and order depend on the physical processes
that one wishes to treat “exactly”. Thus, one may take into account non-invariant values like
those of the pressure tensor and heat flux. The projection operator N̂ maps the state vector
onto the remaining “non-hydrodynamical subspace”. Since we are interested in a model operator
describing the first 13 moments correctly we take the operator Ĥ in the following form:
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Ĥ =

13∑
i=1

|Ψi〉 〈Ψi| . (14)

The linearized collision operator is the following:

δÎ = ĤδÎĤ + ĤδÎN̂ + N̂δÎĤ + N̂δÎN̂ . (15)

Since the first five Hermite polynomials are the eigenfunctions of the collision operator for
identical particles corresponding to the zero eigenvalue, it follows that for 1 ≤ i ≤ 5

ĤδÎĤ = ĤδÎN̂ = N̂δÎĤ = 0. (16)

The higher Hermite polynomials are eigenfunctions of the collision operator only for a Maxwell
molecule. In this case, non-diagonal matrix elements ĤδÎN̂ and N̂δÎĤ vanish:

ĤδÎN̂ = N̂δÎĤ = 0. (17)

For any other interaction potentials the Hermite polynomials are not the eigenfunctions of
the collision operator, the equality(17) does not hold and the collision operator matrix elements
contain non-diagonal elements. Our first approximation is that we accept (17) as a valid formula
for the Boltzmann gas of hard spheres and Coulomb plasma. However, the first approximation
is not suffi cient for describing real gas and plasma. In the second approximation we take
into account only the non-diagonal terms closest to the diagonal. As we will show below, the
corrections for a Boltzmann gas of hard spheres turns out to be small, but for Coulomb systems
they are not small and play a major role in the Spitzer corrections to transport coeffi cients.
We can continue this process and take into account in the third approximation the next, non-
diagonal, terms more distant from the diagonal elements. We performed these calculations
and found that the third approximation yields very small corrections (compared to the Spitzer
approximation), that can be neglected.

Since for one-component systems the operator is Hermitian and isotropic, Wigner-Ekkart
theorem implies 〈

Y m
l h1(u

2)
∣∣ δÎ ∣∣∣Y m′

l′ h2(u
2)
〉

= δll′ δmm′ 〈〈Y m
l h1 | δÎ |Y m

l h2〉〉 , (18)

where h1(u2),h2(u2) are arbitrary functions , Y m
l −are spherical harmonics and 〈〈 | | 〉〉 means

the reduced matrix element independent of m. From (18) the selection rule follows: the
contribution to the non-diagonal matrix elements ĤδÎN̂ and N̂δÎĤ is given only by polynomials
with identical pairs of orbital numbers l and m. For example, for the polynomial |Ψ6〉 =√
3
2 (uxux − 1

3u
2) defining the xx component of the pressure tensor, the non-zero contribution

to the non-diagonal matrix elements is given by non-hydrodynamical polynomials of higher

order in u2 but with the same values of l and m (l = 2;m = 2). For example,
∣∣∣Ψ(2)

6

〉
=
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√
3
14
1
2(u2 − 7)(uxux − 1

3u
2) Ṫhe main modeling procedure consists of approximating the non-

hydrodinamical contribution. If the operator Ĥ involves the first 13 Hermite polynomials, then
the neglect of the term N̂δÎN̂ does not affect calculations for such transport coeffi cients as
viscosity and heat conductivity. Nevertheless the approximation

N̂δÎN̂ = −νN̂ (19)

allows one to describe at least qualitatively the ’tails’of neglected ’non-hydrodynamical’terms
(ν corresponds to the longest non-hydrodynamical relaxation time). An account of these ’tails’
may be important at the kinetic level of fluctuation description. Using this approximation one
may rewrite, in a first approximation, that corresponds to the Maxwell’s molecule, the model
operator as follows:

δÎ = −νÎd+ Ĥ(δÎ + ν)Ĥ. (20)

For a 13 moment basis for Ĥ in the first approximation

δÎ |h〉 = −ν |h〉+ ν

5∑
i=1

|Ψi〉 〈Ψi|h〉+

13∑
i=6

|Ψi〉 (〈Ψi| δÎ |Ψi〉+ ν) 〈Ψi|h〉 . (21)

In the second approximation, in (21) appear the nearest non-diagonal entries:

13∑
i=6

|Ψi〉 〈Ψi| δÎ
∣∣∣Ψ(2)

i

〉〈
Ψ
(2)
i |h

〉
, (22)

where the non-hydrodynamical polynomials, which we take into account, are∣∣∣Ψ(2)
i

〉
=

1√
14

(u2 − 7) |Ψi〉 , 6 ≤ i ≤ 10 (23)

∣∣∣Ψ(2)
r+10

〉
=

1√
280

(u4 − 14u2 + 35) |Ψr〉 , 1 ≤ r ≤ 3. (24)

To close the terms (22) we use the following equation for the non-hydrodynamical moments in
the Fourier presentation

(−iω −
〈

Ψ
(2)
i

∣∣∣ δÎ ∣∣∣Ψ(2)
i

〉
)
〈

Ψ
(2)
i |h

〉
ω

=
〈

Ψ
(2)
i

∣∣∣ δÎ |Ψi〉 〈Ψi|h〉ω (25)

Thus in the second approximation, linearized model collision operator has the form

δÎ |h〉ω = −ν |h〉ω + ν

5∑
i=1

|Ψi〉 〈Ψi|h〉ω −
13∑
i=6

|Ψi〉 (iΛ(2)i (ω)− ν) 〈Ψi|h〉ω , (26)

where

iΛ
(2)
i (ω) = −〈Ψi| δÎ |Ψi〉 −

〈Ψi| δÎ
∣∣∣Ψ(2)

i

〉2
−iω −

〈
Ψ
(2)
i

∣∣∣ δÎ ∣∣∣Ψ(2)
i

〉 (27)

contains the square of the non-diagonal entries and the projection of the kinetic equation
resolvent to the non-hydrodynamical subspace. Here we take into account non-stationarity
of non-hydrodynamical moments. Thus, although the original collision integral is Markovian,
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the part projected onto the supspace of 13 moments becomes, in the second approximation, a
frequency dependent operator. A similar situation occurs in quantum-mechanical perturbation
theory. Note that in the Markov approximation the second order corrections in (27)are negative
for any interaction potentials.
Calculate now matrix elements of the operator for a concrete interaction potential, namely

for Coulomb plasma and a Boltzmann hard sphere gas. For the Coulomb interaction take the
linearized collision operator in the Balescu-Lenard form. In this case the matrix elements are of
the form

〈Ψi| δÎ |Ψj〉 = −
∫
dpdp′dk

e4krksδ(kv − kv′)
k4 |ε(kv,k)|2

f0(p)f0(p′) (28)

×(
∂Ψi

∂pr
− ∂Ψi

∂p′r
)(
∂Ψj

∂ps
− ∂Ψj

∂p′s
).

For i=j the entries are
〈Ψi| δÎ |Ψi〉 ≤ 0 (29)

for any polynomials. Equality to zero corresponds to the five-time-degenerate zero eigenvalue.
It is easy to see that the matrix elements of the operator ĤδÎĤ have following values:

〈Ψi| δÎ |Ψj〉 = − δij [ Λ1

10∑
k=6

δik + Λ2

13∑
k=11

δik], (30)

where Λ1,Λ2 are the relaxation frequencies of the pressure tensor and the heat flux vector which
in terms of plasma parameters are as follows:

Λ1 =
8

5

ne4
√
π

m1/2T 3/2
Ln; Λ2 =

2

3
Λ1. (31)

The matrix elements of the operators N̂δÎN̂ and ĤδÎN̂ defining ’tails’ and the second
approximation for the Coulomb plasma are equal to [16]

〈Ψ14| δÎ |Ψ14〉 = −2

3
Λ1; Ψ14 =

1√
120

(u4 − 10u2 + 15)

〈Ψ15| δÎ |Ψ15〉 = ... = 〈Ψ21| δÎ |Ψ21〉 = −3

2
Λ1; Ψ15 = uxuyuz

〈Ψ22| δÎ |Ψ22〉 = ... = 〈Ψ35| δÎ |Ψ35〉 = −191

16
Λ1;

Ψ22 =
1√
105

1

8
(35u4x − 30u2u2x + 3u4);〈

Ψ
(2)
i

∣∣∣ δÎ ∣∣∣Ψ(2)
i

〉
= −201

168
Λ1; 〈Ψi| δÎ

∣∣∣Ψ(2)
i

〉
=

3

2
√

14
Λ1; 6 ≤ i ≤ 10〈

Ψ
(2)
10+r

∣∣∣ δÎ ∣∣∣Ψ(2)
10+r′

〉
= −15

14
δrr′Λ1; 〈Ψ10+r| δÎ

∣∣∣Ψ(2)
10+r′

〉
=

1

7
δrr′Λ1; 1 ≤ r ≤ 3. (32)

This estimate implies that the higher tensor character of the polynomial leads to higher values of
the matrix elements and for polynomials with the same tensor character the matrix elements are
greater for polynomials of higher order in u2. The smallest value of the diagonal matrix elements
for the non-hydrodynamical polynomial is achieved for the Ψ14 polynomial and equals Λ2 (the
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heat flux relaxation frequency). The same holds for Maxwell’s molecule and the Boltzmann gas
hard sphere at least. Thus in the first approximation the collision operator is of the form:

δÎ |h〉 = −2

3
Λ1 |h〉+

2

3
Λ1

5∑
i=1

|Ψi〉 〈Ψi|h〉 −
1

3
Λ1

10∑
i=6

|Ψi〉 〈Ψi|h〉 . (33)

We see that the polynomials corresponding to the heat flux disappear. In the second
approximation

δÎ |h〉ω = −ν(|h〉ω −
13∑
i=1

|Ψi〉 〈Ψi|h〉ω)

−
10∑
i=6

Λ
(2)
1 (ω) |Ψi〉 〈Ψi|h〉ω −

13∑
i=11

Λ
(2)
2 (ω) |Ψi〉 〈Ψi|h〉ω , (34)

where

Λ
(2)
1 (ω) = Λ1(1−

Λ19/56

−i ω + Λ1205/168
); Λ

(2)
2 (ω) = Λ2(1−

Λ13/14

−i ω + Λ115/14
). (35)

In the Markov approximation (ω = 0) this leads to Spitzer values [17] of transport coeffi cients.

Λ
(2)
1 = Λ1(1−

27

205
); Λ

(2)
2 = Λ2(1−

1

5
). (36)

This correction are rather significant. In the third approximation the relaxation frequencies vary
by no more than one per cent. Thus our model leads to Spitzer kinetic coeffi cients.
The second-order corrections for Boltzmann gas are one order less than for Coulomb plasma

and one may stop at the first approximation. Thus in the case of a Boltzmann gas of hard
sphere the collision operator may be represented in the form [18]

I{f} = −ν{f − f0(1− Pij
δviδvj
4PT

m)}, (37)

where

Pij = m

∫
dpf(δviδvj − δij

δv2

3
) (38)

is the pressure tensor.
In the equilibrium state, Pij = 0 and I{f0} = 0. In the equation for the heat flux only the

first term in (37) contributes. The relaxation of the pressure tensor is determined by both the
first and the last terms in this equation.
Now we will prove the H theorem for our model (37):

∂

∂t
H(t) = ν

∫
(f − Φ) log

f

Φ
dp+ν

∫
(f − Φ) log Φdp, where Φ = f0(1− Pij

δviδvj
4PT

m)

= ν

∫
(f −Φ) log

f

Φ
dp+ν

∫
[f − f0(1−Pij

δviδvj
4PT

m)][log f0 + log(1−Pij
δviδvj
4PT

m)]dp, (39)

The first term in the second square bracket in (39) vanishes, while the second term can be
expended as: log(1 + x) = x − x2/2 + x3/3...; for −1 < x ≤ 1. Hear only the first term
contributes after the integration.
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Therefore:

∂

∂t
H(t) = ν

∫
(f−Φ) log

f

Φ
dp+ν

∫
[f−f0(1−Pij

δviδvj − δij δv
2

3

4PT
m)](−Pij

δviδvj − δij δv
2

3

4PT
m)dp.

(40)
Taking into account that∫

f0(δviδvj − δij
δv2

3
)(δvkδvl − δkl

δv2

3
)dp =

T 2

m2
(δikδjl + δilδjk −

2

3
δijδkl), (41)

we obtain the H theorem:

∂

∂t
H(t) = ν

∫
(f − Φ) log

f

Φ
dp− ν

8P 2
PijPij ≤ ν

∫
(f − Φ) log

f

Φ
dp ≤ 0 (42)

Thus our collision integral in the form (37) possesses all necessary properties and is free from
the drawbacks of the one-component model of the BGK model mentioned above. The linearized
form of (37) is congruent with the linearized ellipsoidal statistical model [2-3].
Earlier, another model correctly describing the viscosity and thermal conductivity relaxation

was proposed ad hoc [19]:

I{f} = −ν{f − f0[1− Pr
Jδv

5P
(
δv2

mT
− 5)]}, (43)

where J is the heat flux. But this model does not give a correct description of non-
hydrodynamic ’tails’.

2.2. Many-component systems
Using the technique described above for a one-component system, one may get the following
expression for the linearized model collision operator of a many-component system in the five-
moment approximation [18]:

δÎapδfa(p) = −νaδfa(p) +
5∑
j=1

νaf
0
a (p)Ψa

j (p)

∫
Ψa
j (p
′)δfa(p

′)dp′

+
∑
b

5∑
i,j=1

f0a (p)Ψa
i (p) 〈Ψa

i | δÎ
∣∣∣Ψb

j

〉∫
Ψb
j(p
′)δfb(p

′)dp′, (44)

where f0a (p) -is the local equilibrium distribution function (with different temperatures and
mean velocities), νa -is the inverse time of the heat flux relaxation of component a, and

〈Ψa
i | δÎ

∣∣∣Ψb
j

〉
represents the matrix elements of the linearized collision integral (of the Balescu-

Lenard integral, for example).
In order to recover the form of the model collision integral from its linearized form it suffi ces

to use conservation of the number of elastically interacting particles. This property, as well as
total momentum and energy conservation, is valid for both mean and fluctuating quantities.
Consequently, the expression for Langevin’s source intensity in the kinetic equation for the
distribution function fluctuation [20]

(
∂

∂t
+ v

∂

∂r
+ δÎap)δfa(x,t) + δF

∂

∂p
fa(x,t) = ya(x,t) (45)
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should satisfy the conditions∑
b

∫
Ψb(p2)(yayb)ω,k,p1,p2dp2 = 0 for Ψb(p2) = 1, p2, p

2
2/2mb . (46)

The spectral function of the Langevin source in a non-equilibrium state is given [21, 22] by
following form:

(yayb)ω,k,p1,p2 = −(δÎap1 + δÎbp2)δabδ(p1−p2)fa(p1) + δabδ(p1−p2)Ia(p1) + Iab(p1,p2) , (47)

whereIab(p1,p2)− is the so-called “not integrated”’collision operator:
∑

b

∫
Iab(p1,p2)dp2 =

Ia(p1).
In the case of plasma the “not integrated”collision operator has the form:

Iab(p1,p2) =2e2ae
2
bnb(

∂

∂pi
− ∂

∂p′i
)

∫
kikjδ(kv − kv′)
k4 |ε(kv,k)|2

(
∂

∂pj
− ∂

∂p′j
)fafbdk. (48)

Summing (47) over b and integrating over p2, and taking into account (46), we get

Ia(p1) = −1

2
(δÎap1 + δÎbp2)δabδ(p1 − p2)fa(p1)dp2. (49)

Since(46) and(47) are of a general character, the relation (49) is valid both for “exact” and
model collision integrals. Substituting (44) into (49), we obtain a quite simple and at the same
time suffi ciently rigorous form of the model collision integral for many-component plasma:

In the local equilibrium state the collision integral assumes the fairly simple form:

Ia(p1) = −
∑
b

νabf
0
a (p)

[
δvama

Va−Vb

Ta
+

(
ma

Ta
δv2a − 3

)
(Ta − Tb)

ma

ma +mb

]
, (50)

where νab is the momentum relaxation frequency for plasma:

νab =
4

3

√
2πe2ae

2
bnbL

√
ma

mb

(ma +mb)
1/2

(maTb +mbTa)
3/2
, and δva = va −Va. (51)

In the second term in (50) we took into account the isothermal case and in the third term we
neglected corrections of the square mean velocities. The first term in (50) describe relaxation
to the local equilibrium state, the second term describes relaxation of the momenta and the last
term the temperature relaxation. In this case it is easy to verify the Boltzmann H-theorem for
this form of the collision integral.

∂

∂t
H(t) = −

∑
a

∫
δp2

2maTa
Ia(p1)dp = −3

4

∑
ab

νab
mana

ma +mb

(Ta − Tb)2

TaTb
≤ 0, (52)

Thus, the complicated exponential dependency typical for the GK model appears to be
unfounded and does not hold for states remote from the full equilibrium.
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Ia(p1) = −νa[fa(p)− f0a (p)(1− Pij
δviδvj
4PT

m)]

−
∑
b

νabf
0
a (p)

[
δvama

Va−Vb

Ta
+

(
ma

Ta
δv2a − 3

)
(Ta − Tb)

ma

ma +mb

]
(53)

Thus, the time evolution of the two-component gas up to the hydrodynamic stage can be
described as follows: first, the lighter component achieves equilibrium, then the balanced state
of the heavy component, and finally a balance across the gas mixture is achieved. At all these
stages Boltzmann’s H-theorem holds.

3. Conclusion
Using the well-known projection technique, a new form of the collision operator for a Boltzmann
gas of hard spheres and for Coulomb plasma has been developed. The proposed collision operator
takes into account relaxation of the first 13 hydrodynamic moments properly and accounts for
the contribution of non-diagonal components in the expansion of the linearized collision operator
in the complete system of Hermite polynomials. The non-diagonal components accounted for in
this basis in the quadratic approximation contribute to the diagonal components. It is shown that
for a system of charged particles with a Coulomb interaction potential, these contributions are
essential and lead to Spitzer corrections to the transport coeffi cients. In the case of a Boltzmann
gas of hard spheres these corrections are insignificant. In the case of a many-component system,
the nonlinear model collision integral is constructed on the basis of the linearized one. Unlike
previous cases, it does not exhibit any complicated exponential dependence and avoids coeffi cient
ambiguity in the many-component collision integral.
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