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Abstract. We examine the validity of molecular dynamics simulations for a simple one-
dimensional system having a piecewise continuous linear repulsive potential wall with a constant
slope a. The inevitable energy change ∆E that occurs in the collision with the potential wall
is shown to be dependent on only two parameters α and µ ≡ aτ/p0, where α is a fraction of
the time step τ immediately after the contact with the potential wall and p0 is the momentum
just before the collision. The whole space of parameters α and µ can be divided into an infinite
number of regions, where each region generates separately a positive or negative energy change
∆E. The envelope of |∆E| shows a power law behavior |∆E| ∝ µβ with the exponent β ≈ 1.08.
The average of ⟨|∆E|⟩α over a uniform distribution of α shows a broken power law behavior
⟨|∆E|⟩α ∝ µβ with β ≈ 1.98 at larger µ values and β ≈ 0.99 at smaller µ values.

Hard core particles only feel repulsive impulses at the time when they collide. To simulate
this system, we usually employ event-driven methods [1]-[2] to determine the time at which any
two hard-core particles collide. At the time of collision, their longitudinal components of the
velocities are exchanged, but their transverse components of the velocities do not change at all.
Consequently, their total energy is completely conserved in the molecular dynamics simulations.

However, molecules usually have soft repulsive components in the potential function. This
can be modeled by exponential or power functional forms [3]-[5]. For example, noble gases such
as argons can be described by the Lennard-Jones potential

VLJ(r) = 4ϵ[(
r

σ
)−12 − (

r

σ
)−6], (1)

where ϵ and σ characterize energy and length scales, respectively. In the simulation of a system
with a soft potential [6]-[9], it is practically impossible to keep the energy of the system constant
due to the inherent round-off errors involved in the digitization and truncation errors involved
in the approximations of mathematical formula.

If the total energy of a system is different from the given initial total energy E, the system
may sometimes show somewhat different thermodynamic and dynamic behaviors from what we
originally aimed. Molecular dynamics corresponding to the NVE ensemble [10]-[11] generates
phase trajectories moving on the constant energy surface E = const. Therefore, it is important
to know how the total energy E depends on the control parameters of the system during the
process of the molecular dynamics simulations.
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To address this problem, we consider a very simple system as an example. The system is
composed of a simple particle colliding with the soft potential wall in one-dimension. The soft
potential wall is modeled as a piecewise linear potential:

V (q) =

{
0, if q ≥ 0, (Region I),

aq, otherwise, (Region II),
(2)

where q is a coordinate of the particle and a(< 0) is a constant that characterizes the slope of
the potential. For simplicity, we take the unit mass of the particle. In region I where q ≥ 0,

the particle moves freely with the Hamiltonian H(p, q) = p2

2 . In region II where q < 0, it moves

with the Hamiltonian H(p, q) = p2

2 + aq.
In this review, we summarize the previous results [12]-[13] about this problem and examine

their implications. We present the analytical expression for energy change ∆E and its average
effect over the initial conditions for NVE ensemble.

A velocity Verlet algorithm, one of the symplectic algorithms, is used to solve the Newtonian
equation of motion. The equations for the algorithm for a particle moving from region I, with
a coordinate q0 immediately before the contact, to region II, with a coordinate q1 immediately
after the contact, are written as {

q1 = q0 + τp0,

p1 = p0 − 1
2aτ.

(3)

For a particle moving in region II, we can write{
qn+1 = qn + τpn − 1

2aτ
2,

pn+1 = pn − aτ,
(4)

and thus, the trajectory is a parabola. The number nc denotes the number of steps immediately
after the collision with the potential wall when the particle is leaving region II. Thus, nc − 1
is the number of steps for the particle to stay in the potential wall during the collision. For
(nc − 1)-th step, we have{

qnc−1 = q1 + (nc − 2)τp1 − 1
2aτ

2(nc − 2)2,

pnc−1 = p1 − (nc − 2)aτ.
(5)

Furthermore, for a particle moving from region II, with a coordinate qnc−1 immediately before
the exit of the potential wall, to region I with a coordinate qnc immediately after the exit of the
potential wall, the equations are written as{

qnc = qnc−1 + τpnc−1 − 1
2aτ

2,

pnc = pnc−1 − 1
2aτ.

(6)

Finally, from Eqs. (3)-(6), we get{
qnc = q0 + τp0nc − 1

2aτ
2nc(nc − 1),

pnc = p0 − aτ(nc − 1).
(7)

From Eq. (7), nc can be calculated to be

nc = ceil(
1 + 1

2µ+
√

(1 + 1
2µ)

2 + 2(α− 1)µ

µ
), (8)
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where the function ceil(x) denotes the minimum integer larger than x.
If we define ∆E as the relative energy change during the collision,

∆E ≡ pnc
2 − p0

2

p02
= µ(nc − 1)(µ(nc − 1)− 2). (9)

We can explicitly derive the analytical expression for an inevitable energy change ∆E due
to the discrete process, which is only dependent on two parameters: (1) α ≡ 1 − q0

τp0
, which

is a fraction of the time step τ immediately after the contact with the potential wall and (2)
µ ≡ aτ/p0, where q0 and p0 are the coordinate and momentum of the particle just before the
collision with the wall.

Figure 1. (Color on-line) Divisions of α and µ space up to nc = 10. These divisions can continue
up to nc → ∞. The cross points with abscissa are given by the formula µ = 2

nc
, nc = 2, · · · ,∞.

All points on the vertical lines and diagonal lines, except α = 0 show ∆E = 0. Upper right-
angled triangles show ∆E > 0, denoted with the ‘+’ symbol shown in the box. Lower right-
angled triangles show ∆E < 0, denoted with the ‘−’ symbol shown in the box. The numbers
shown in the box are the number nc.

The whole space by the two parameters α and µ can be divided into an infinite number of
regions where each region creates a positive or negative energy change ∆E. Parameter α is
in the range of 0 < α ≤ 1, and µ is in the range of 0 < µ ≤ 2 since nc is an integer greater
than 1. From Eq. (8), for a fixed value of µ, the number of collisions nc changes by 1 over
the whole range of α from 0 to 1, since nc(α = 1) − nc(α = 0) = 1 for any value of µ. If
µ(nc − 1) = 2, then ∆E = 0 for any value of α. Thus, vertical lines µ = 2

nc−1 for nc = 2, · · · ,∞
divide the parameter space into an infinite number of subspaces, as shown in Fig. 1. Straight
lines α = (nc − 1)(12ncµ − 1) for nc = 2, · · · ,∞ divide the subspaces into two regions: upper
triangles show a positive change in ∆E, and lower triangles show a negative change in ∆E. At
points on the boundaries, ∆E = 0. In Fig. 1, the regions are denoted with different colors and
a pair of symbols including a number nc and a symbol, ’+’ or ’-’, up to nc = 10.

Fig. 2 shows the results of ∆E as a function of µ for different values of α. The upper bounds
of individual values |∆E| show a power law behavior |∆E| ∝ µβ, with the exponent β ≈ 1.08.
This exponent governs the energy fluctuation from the round-off error at a discrete time step
τ . This implies that the round-off error in the energy, introduced by the discreteness, is nearly
proportional to the time step τ .
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Figure 2. (Color on-line) Energy change ∆|E| vs. parameter µ along the horizontal lines in
Fig. 1 for different values of parameter α = .1, .5 and .9. The straight line corresponds to the
envelope of upper bounds of log |∆E|.
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Figure 3. (Color on-line) Log-log plot of energy change ⟨|∆E|⟩α vs. µ. Averages are taken
over a uniform distribution of parameter α.

Let us now consider the analytical expression for the averages of energy change ∆E under
appropriate distributions of the parameters α and µ. Averages are taken along either the vertical
lines (averages over α) or the horizontal lines (averages over µ or p0). ⟨|∆E|⟩α is defined as the
average of |∆E| along a horizontal line with α = constant. In the simulations, we actually
encounter many different realizations of α; however, unfortunately, we do not know a priori the
distribution of α. Thus, we have to assume that the distribution of α is uniform on (0, 1]. The
calculated results are shown in Fig. 3. To draw on the same side in Fig. 3, we take absolute
values. As the value of µ decreases starting from µ = 2 down to µ = 10−1.5 ≈ 0.03, the average
⟨∆|E|⟩α decreases rather rapidly. Thus, it appears that they show two straight lines having
exponents β ≈ 1.98 at larger µ values and β ≈ 0.99 at smaller µ values. The two straight
lines intersect around µ ≈ 0.03. This implies that choosing a time step of τ ≈ 0.03p0/a can
be thought of as an optimum for the simulations without generating large errors in the energy
estimations.

In summary, the validity of molecular dynamics for soft matter has been examined
analytically. The envelope of log |∆E| follow a power law with an exponent of 1.08. Furthermore,
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the average of ⟨|∆E|⟩α shows a broken power law behavior ⟨|∆E|⟩α ∝ µβ having two exponents
β ≈ 1.98 at larger values of µ and β ≈ 0.99 at smaller values of µ. Thus, the error in the energy
drift introduced by the discrete process is canceled significantly through the average process.
Average over the initial conditions on α and µ can significantly increase the optimum time step
up to several times. Although we have demonstrate the validity of molecular dynamics for a
very simple system with a linear potential wall, the results can be generalized to a wide range
of systems as well.
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