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Abstract. The phase transitions in two-dimensional antiferromagnetic Ising model are studied 
on a square lattice by taking the interactions of next-nearest neighbors into account. The model 
is investigated on basis of the replica Monte Carlo algorithm and the histogrammic analysis of 
data. The diagram of the critical temperature dependence on an interaction value of next-
nearest neighbors is plotted. The studied model reveals the phase transition of second order and 
the frustration points depending on relative interaction values and magnetic field. A effect, heat 
capacity splitting near the frustration points, is found. 

Introduction 
The modern physics of condensed state uses different lattice models for quantitative description of 
phase transitions (PTs) and critical properties (CP). Theoretical methods used on simple lattice models 
could solve very limited number of tasks. One of such models is a two-dimensional Ising model. The 
Ising model with interaction of nearest neighbors has been well studied by different methods and 
approaches [1-4]. The same model on a square lattice with ferromagnetic interactions of first and 
second neighbors has been accurately solved. However the taking into account of antiferromagnetic 
interactions of second nearest neighbors in classical two-dimensional Ising model is attended by 
quenching of the main state and appearing of different phases and phase transitions. Furthermore, 
accounting for interactions of next-nearest neighbors can influence on a critical behavior of the model, 
in particular, the various anomalies of critical properties appear [5]. 
First renormalization group calculations and numerical simulation by the Monte Carlo (MC) method 
for two-dimentional antiferromagnetic Ising model on a square lattice with interactions of next-nearest 
neighbors were carried out in works [6, 7] by the end of the 1970s. Authors supposed the presence of a 
phase transition of second order, estimated the temperature of the phase transition, and calculated 
critical exponents. 
In works [8-10], authors reported the second order PTs in antiferromagnetic Ising model on a square 
lattice with interactions of next-nearest neighbors. Also this model could possess “anomalous” critical 
exponents. Additionally, the dependence of critical exponents on correlation JNNN / JNN (JNN and JNNN 
denote the constants of exchange interactions of nearest and next-nearest neighbors, correspondingly) 
was determined. But the scenario of a continuous phase transition was doubted after calculations by 
the mean-field theory which recognized the phase transition of first order [11]. 
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According to works [12-14] the first order PTs were observed for Ising model on a square lattice with 
ferromagnetic interactions of nearest neighbors and with antiferromagnetic interactions of next-nearest 
neighbors in value intervals JNNN / JNN = 0.5 ÷ 1.2 in the system. In our previous work [15] we 
estimated the antiferromagnetic Ising model on a square lattice with taking into account the 
interactions of next-nearest neighbors for JNNN / JNN = 1 and determined the second order phase 
transition. 
The main goal of the present work is to provide the accurate determination of a PT order of 
antiferromagnetic Ising model on a square lattice with taking into account next-nearest neighbors 
within value intervals 0.1 ≤ JNNN / JNN < 1 on basis of the replica Monte Carlo algorithm using a 
reliable and verified scheme and a unified technique. 

Model and method 
The antiferromagnetic Ising model on a square lattice taking into account interactions of second 
nearest neighbors is described by Hamiltonian [15]: 
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where Si,j=1 is the Ising spin. The first term in the Equation (1) accounts for the exchange interaction 
of nearest neighbors by the value of JNN<0, and the second term considers next-nearest neighbors by 
JNNN<0, h is the external magnetic field. 
The investigation of phase transitions in frustrated spin systems by traditional theoretical, 
experimental, and numerical methods faces with complex problems. This is connected with the 
inherent in such models problems of multiple valleys of local energy minima. Such systems can be 
rigorously and sequentially studied by the Monte Carlo methods on basis of microscopic Hamiltonians 
[16-19] but the standard Monte Carlo methods fail to solve these problems. Therefore, in recent time 
many new versions of Monte Carlo algorithms are developed for solution of these problems. The most 
powerful and effective algorithms for estimation of PTs and CPs in frustrated systems proved to be the 
replica Monte Carlo algorithms [20]. 
By now the replica Monte Carlo algorithms and the finite-size scaling theory become the basic tools 
for the investigation of critical properties of such complex systems. 
To analyze a nature of phase transitions and the peculiarities of thermal characteristics near the critical 
point is used a histogram method [21]. The histogram analysis allows to estimate the reliability and 
accuracy of data derived from Binder cumulants calculations by Monte Carlo method and also to 
determine other important parameters [22]. 
The histogram method uses a random walk in the energy space and allows to detect accurate 
estimations for energy state densities g(U). The probability of transition from one state into another is 
determined by the formula 

 ]1),'(/)(min[)'( UgUgUUP   (2) 

where U  and 'U  denote the energies before and after spin flip. 
The calculations were carried out for the systems with periodic boundary conditions and linear sizes 
L×L = N, L = 20÷150. The exchange interaction correlation of next-nearest neighbors and nearest 
neighbors changed in value intervals 0.1 ≤ JNNN / JNN < 1. The system was brought into a 
thermodynamic equilibrium state by cut-off τ0 = 4×105 MC step/spin, which is several times larger 
than the nonequilibrium part, where τ0 denotes the length of nonequilibrium part of Markovian chain. 
The thermodynamic properties were averaged along the Markovian chain of length up to τ = 100τ0 
MC step/spin. 

Simulation results 
The temperature behavior of heat capacity and susceptibility was determined by the expressions [23]: 
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where ,/ TkJK B  N is the number of particles, U is the internal energy, m is the order parameter. 

The order parameter m was derived from expressions [15]: 
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where m1, m2, m3, m4 are the order parameters of sublattices. 
Figures 1 and 2 present the temperature dependences of the heat capacity and susceptibility obtained at 
L=80 for different values JNNN / JNN (here and elsewhere a statistic error does not exceed the sizes of 
symbols used for plotting the curves). Note that decrease of JNNN / JNN in intervals 1 ≥ JNNN / JNN ≥ 0.6 
is accompanied with maxima shift towards lower temperatures and simultaneously the absolute 
maxima of heat capacity and susceptibility increases. We interpreted such behavior by the reason that 
when increasing the interactions of next-nearest neighbors, the contribution of interaction energy 
increases in modulus what enhances the rigidity of the system, and correspondingly the phase 
transition temperature arises. The increase in the absolute values of maxima is accounted for 
competing of nearest neighbors and next-nearest neighbors. 
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Figure 1. The dependence of heat capacity C/kB on the temperature kBT/|J| for different JNNN / JNN. 
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Figure 2. The dependence of susceptibility χ on the temperature kBT/|J| for different JNNN / JNN. 

Figures 3 and 4 show the temperature curves of the heat capacity and susceptibility in intervals 0.1 ≤ 
JNNN / JNN ≤ 0.4. It is notable that well-marked maxima are observed in all temperature curves of heat 
capacity C and susceptibility χ for all r near the critical temperature. We observe opposite behavior in 
the case when 0.1 ≤ JNNN / JNN ≤ 0.4. The phase transition temperature shifts towards higher 
temperatures at the decrease of r from 0.4 to 0.1. 
We determined the critical temperatures TN using the method of forth-order Binder cumulants [24, 25]: 
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where UL is the cumulant in magnetization, VL is the cumulant in energy. 
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Figure 3. The dependence of heat capacity C/kB on the temperature kBT/|J| for different JNNN / JNN. 

25th IUPAP Conference on Computational Physics (CCP2013) IOP Publishing
Journal of Physics: Conference Series 510 (2014) 012026 doi:10.1088/1742-6596/510/1/012026

4



 
 
 
 
 
 

1.0 1.5 2.0 2.5

0

75

150

225

300

             L=80
 J

NNN
 / J

NN
 =0.1

 J
NNN

 / J
NN

 =0.2
 J

NNN
 / J

NN
 =0.3

 J
NNN

 / J
NN

 =0.4

k
B
T/J



 

 

 

 

Figure 4. The dependence of susceptibility χ on the temperature kBT/|J| for different JNNN / JNN. 

From Expressions (9) and (10) the critical temperature can be detected to a high accuracy. It should be 
noted that Binder cumulants provide good testing of PTs type in the system. It is common knowledge 
that the temperature curves of Binder cumulants UL have a well-marked cross point at second order 
PTs [25]. 
Figures 5 presents the UL temperature curve at JNNN / JNN =0.7 for different values of L. This figure 
shows the accuracy in the detection of critical temperature. As is evident from insert, the well-marked 
cross point observed in the critical region (here and elsewhere the temperature is expressed in the unite 
of |J|/kB) indicates the second order PTs. The critical temperatures for other JNNN / JNN values were 
determined in a similar way. 
The temperature dependence of cumulants in energy VL at JNNN / JNN =0.7 for different L is shown in 
Figures 6. As is obvious from the figure, the minimum magnitude of VL disappears at increase in L and 
the value of VL tends to 2/3 at T→0 what also is typical for second order PTs. By a diagram form in 
Figures 6 one can predict a type of the phase transition in the system. A detail description is reported 
in our previous work [24]. 
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Figure 5. The dependences of Binder cumulant UL on the temperature kBT/|J| for JNNN / JNN =0.7. 
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Figure 6. The dependences of Binder cumulant VL on the temperature kBT/|J| for JNNN / JNN =0.7. 

Figures 7 presents the dependence of critical temperature on an interaction value of next-nearest 
neighbors. As is evident from the diagram, the different phases cross at a point JNNN / JNN = 0.5: 1) 
ferromagnetic, 2) paramagnetic, and 3) super antiferromagnetic lines. The figure demonstrates that the 
critical temperature TN = 0 and phase transition are lack for the value JNNN / JNN = 0.5. This comes from 
the similarity in the interactions of nearest neighbors and next-nearest neighbors at JNNN / JNN = 0.5 and 
the whole system frustrates. It disorders the system and results in a disappearance of phase transition. 
It can be inferred by Figures 8 where the heat capacity temperature curve at JNNN / JNN = 0.5 for big 
size lattices (150) has not an abrupt jump but changes smoothly. A similar behavior of the heat 
capacity temperature curve is observed for JNNN / JNN =0.49 and JNNN / JNN =0.495 which are below the 
value JNNN / JNN = 0.5. For two-dimensional case in all frustration points, the temperature dependence 
of the heat capacity is of smooth maximum form. When moving away from the frustration point, a 
sharp lambda-shaped peak appears in the heat capacity and the smooth maximum is slightly 
decreasing (heat capacity splitting). At further moving away from the frustration point the smooth 
maximum vanishes and the sharp peak remains only. This is demonstrated in Figures 9. Also the 
figure exhibits the well-marked maxima near the critical temperature for values JNNN / JNN = 0.505 and 
JNNN / JNN = 0.51, which are above the value JNNN / JNN = 0.5. 
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Figure 7. The phase diagram of dependence critical temperature on the interaction value of next-
nearest neighbors, where F – ferromagnetic phase, P – paramagnetic phase, SAF – super 
antiferromagnetic phase. 
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Figure 8. The dependence of heat capacity C/kB 
on the temperature kBT/|J| for JNNN / JNN = 0.5. 

 Figure 9. The dependence of heat capacity 
C/kB on the temperature kBT/|J| for L = 150. 

 

 
Figure 10. The histogram of energy distribution for JNNN / JNN =0.7. 
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Figure 11. The dependence of heat capacity C/kB on the temperature kBT/|J| for different h. 
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In work [26], authors reported the phase diagram for phase transition temperature dependence TN on 
the ratio of exchange parameters JNNN / JNN for the similar model. They determined that the second 
order phase transition occurred in value intervals JNNN / JNN < 0.5 and JNNN / JNN ≥ 0.948 and the first 
order phase transition happened in intervals 0.5 < JNNN / JNN < 0.948. According to our investigations 
the second order phase transition took place in intervals 0.5 < JNNN / JNN ≤ 1. This was confirmed by 
the histogram analysis. 
The histogram of energy distribution for JNNN / JNN = 0.7 is presented in Figures 10. The diagram is 
plotted near the critical point for a lattice with L = 150. In the Figure, a maximum typical for second 
order phase transitions is observed [24]. Similar histograms were plotted for other values of JNNN / JNN. 
According to obtained data the second order phase transitions are observed in all long interval 0.1 ≤ 
JNNN / JNN ≤ 1, except when JNNN / JNN = 0.5 where the phase transition fails to take place. The point 
JNNN / JNN = 0.5 is the frustration point. 
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Figure 12. The dependence of order parameter m on the temperature kBT/|J| for different h. 

Figures 11 and 12 present the temperature dependence plots of heat capacity and order parameter on 
the external magnetic field for a case when accounting the interactions of nearest neighbors only. The 
plots exhibit the anomalous behavior in the heat capacity and order parameter dependences for the 
field value h = 4.0. This comes from the fact that when the value of external magnetic field is 4.0, the 
system is frustrated even without considering the interactions of next-nearest neighbors. 

Conclusion 
The phase transitions in two-dimensional antiferromagnetic Ising model with taking into account of 
the interactions of next-nearest neighbors are studied using the exact and efficient replica Monte Carlo 
algorithm. A behavior of phase transitions for different correlations of r of nearest neighbors and next-
nearest neighbors is analyzed by the histogram and Binder cumulants methods. The phase diagram of 
critical temperature dependences on the interaction value of next-nearest neighbors is plotted. The 
second order phase transition is shown to happened for all values in intervals 0.1 ≤ JNNN / JNN < 1 
except JNNN / JNN = 0.5. The value JNNN / JNN = 0.5 is detected to be the frustration point for this model. 
It is shown that this model frustrated in the external field at h=4.0 even when taking into account the 
nearest neighbors only. 
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