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Abstract. Simulation of critical relaxation of the magnetization in a three-dimensional Ising
model diluted by quenched nonmagnetic impurity atoms is carried out. The cubic systems with
linear size L = 144 and spin concentrations p = 0.95, 0.8, 0.6, and 0.5 are studied. The dynamical
critical exponent z is determined by the Monte Carlo method combined with the dynamical
renormalization group method. The obtained results are: z(p): z(0.95) = 2.19± 0.07, z(0.8) =
2.29± 0.06, z(0.6) = 2.72± 0.08, and z(0.5) = 2.75± 0.08.

1. Introduction
The investigation of critical behavior of disordered systems remains one of the main problems in
condensed-matter physics and excites a great interest because all real solids contain structural
defects [1, 2]. The structural disorder breaks the translational symmetry of the crystal and
thus greatly complicates the theoretical description of the material. The influence of disorder
is particularly important near the critical point where behavior of a system is characterized
by anomalous large response on any even weak perturbation. The description of such systems
requires the development of special analytical and numerical methods. The effects produced
by weak quenched disorder on critical phenomena have been studied for many years [3–8].
According to the Harris criterion [3], the disorder affects the critical behavior only if α > 0,
the specific-heat exponent of the pure system, is positive. In this case, a new universal critical
behavior, with new critical exponents, is established. In contrast, when α < 0, the disorder
appears to be irrelevant for the critical behavior. Only systems whose effective Hamiltonian
near the critical point is isomorphic to the Ising model satisfy this criterion.A large number of
publications is devoted to the study of the critical behavior of diluted Ising-like magnets by the
renormalization-group (RG) methods, the numerical Monte-Carlo methods, and experimentally
(for a review, see [2, 9–11]). The ideas about replica symmetry breaking in the systems with
quenched disorder were presented in Refs. [12, 13]. A refined RG analysis of the problem has
shown the stability of the critical behavior of weakly disordered three dimensional systems
with respect to the replica symmetry breaking effects [14]. All obtained results confirm the
existence of a new universal class of the critical behavior, which is formed by diluted Ising-like
systems. However, it remains unclear whether the asymptotic values of critical exponents are
independent of the rate of dilution of the system, how the crossover effects change these values,
and whether two or more regimes of the critical behavior exist for weakly and strongly disordered
systems. These questions are the subjects of heated discussions [2,15] and extensive Monte Carlo
simulations for site-diluted [16–18] and bond-diluted [19,20] three-dimensional Ising models.
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At present paper, a computer simulations of the critical dynamics of the diluted 3D
Ising model by the Monte-Carlo method are considered for samples with spin concentrations
p = 0.95, 0.8, 0.6, and 0.5. There is reason to believe that the influence of quenched impurities
on the critical dynamics will be seen more clearly than in the equilibrium state, because of the
specific conservation laws.

2. DESCRIPTION OF THE MODEL AND METHODS
We have considered the following Hamiltonian for the 3D site-diluted ferromagnetic Ising model
defined in a cubic lattice of linear size L with periodic boundary conditions

H = −J
∑
i,j

SiSjpipj , (1)

where the sum is extended to the nearest neighbors, J > 0 is the short-range exchange interaction
between spins Si fixed at the lattice sites, and assuming values of ±1. Nonmagnetic impurity
atoms form empty sites. In this case, occupation numbers pi assume the value 0 or 1 and are
described by the distribution function

P (pi) = (1− p)δ(pi) + pδ(1− pi) (2)

with p = 1 − c, where c is the concentration of the impurity atoms. In this paper, we
have investigated systems with the spin concentrations p = 0.95, 0.8, 0.6, and 0.5. We have
considered the cubic lattices with linear size L = 144. The Metropolis algorithm has been used
in simulations. We consider only the dynamic evolution of systems described by the model A in
the classification of Hohenberg and Halperin [21]. Ising-model dynamics is customarily described
by the conditional probability function Ps(t) ≡ P ({S}, t), which satisfied the Glauber’s kinetic
equation

dPs

dt
= −Ps(t)

∑
s′

W (S → S′) +
∑
s′

W (S′ → S)Ps′(t), (3)

where W (S → S′) is the transition rate from a microscopic state given by the spin configuration
{S} to a state with the configuration {S′}. In order that the Markov process described by
Eq. (2) converge to the equilibrium state of a Gibbs ensemble with Ps = exp(−Es/kT )), the
detailed-balancing condition W (S → S′)Ps = W (S′ → S)Ps is sufficient but not necessary. This
freedom of choice gives W (S− > S′) which is not determined uniquely. The function W is
usually chosen in the form of the Metropolis’s function

W (S → S′) =

{
exp(−△Ess′/kT ), △Ess′ > 0

1, △Ess′ ≤ 0
(4)

or the Glauber’s function

W (S → S′) = exp(−△Ess′/kT )/[1 + exp(−△Ess′/kT ], (5)

where Ess′ = Es′ − Es .
The relation < A(t) >=

∑
sAsPs(t) determines the dynamical evolution of the quantity As,

by means of the function Ps(t) which is the solution of Eq.(3). Metropolis’s algorithm, which
consists of choosing randomly the spin Si, and flipping the spin with probability determined by
the function W in Eq.(4), makes is possible to implement directly the Ising-model dynamics with

relaxation of the magnetization mb(t) =
∑N

i Si/N to the equilibrium value determined by the
thermostat temperature T . The time scale t can be associated with the scale {S} of successive
configurations, assuming that N system sites are chosen randomly per unit time. One time unit
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corresponds to one Monte Carlo step per spin. In simulation of the critical dynamics the initial
state of the system is chosen when all spins are parallel (mb = 1) and the temperature of the
system is equal to the critical temperature. The critical temperature Tc for dilute magnetic
materials is a function of the impurity concentration cimp decreasing with increasing cimp and
vanishing at the threshold concentration cimp = 1 − pc. For a cubic lattice of Ising spins
pc ≃ 0.31 and Tc(p) are equal to: Tc(0.95) ≃ 4.26267, Tc(0.8) ≃ 3.49948, Tc(0.6) ≃ 2.42413, and
Tc(0.5) ≃ 1.84509 [17] in the units J/k. We have used here the Monte Carlo method combined
with the dynamical renormalization group method [22], to determine the dynamic exponent z
characterizing the critical increase in the relaxation time of the system trel ∼ |T − Tc|−zν . For
this, the system was partitioned into blocks, where a block bd of neighboring spins was replaced
by a single spin whose direction is determined by the direction of most spins in the block. The
redefined spin system forms a new lattice with magnetization mb. Let the magnetization of the
initial lattice relax to some m1 over a time t1, and let the redefined system reach the same value
m1 over the time tb. Then by using two systems with block size b and b′ and determining the
relaxation times tb and tb′ of the block magnetizations mb and mb′ to the same value m1, the
dynamic exponent z can be determined from the relation

tb/tb′ = (b/b′)z (6)

or
z = ln(tb/tb′)/ ln(b/b

′) (7)

in the limit of sufficiently large b and b′ → ∞.

3. MEASUREMENTS OF THE DYNAMICAL CRITICAL EXPONENT z FOR
3D SITE-DILUTED ISING MODEL
We applied this algorithm to dilute systems with linear size L = 144 and spin concentrations
presented above. The size of the system made it possible to partition it into blocks with
sizes b = 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, and 72. The procedure of block partitioning of the
initial spin and impurity configurations was implemented on the basis of the criterion of spin
connectivity. Thus a bd-dimensional block was considered to be a spin block and replaced by an
effective spin oriented in a direction determined by the direction of most spins in the block if
the block contained a spin cluster connecting both opposite faces of the block. Otherwise, the
block was considered to be an impurity block and replaced by an empty site in the renormalized
lattice. A relaxation simulating procedure consisting of 10000 Monte Carlo steps per spin was
performed for each system with 1000 runs with different impurity configurations over which the
function mb(t) was averaged.

We demonstrate in fig.1 a)-d) the plots of the initial and renormalized magnetizations m(t),
as functions of time, for systems with spin concentrations p = 0.95, 0.8, 0.6, and 0.5 averaged
over different impurity configurations. The relation (7) can be employed in order to determine
the values of the exponent z independently. However, the power-law character found for the
relaxation of the magnetization at the critical temperature enabled us to employ, in contrast
to [22] and [23], a different and, we believe, better-founded procedure for processing the curves
for the renormalized magnetizations mb(t), as in our paper [24]. Thus the mb(t) curves plotted
in a double logarithmic scale were approximated by the straight lines lgmb = kb lg t+nb, by the
least squares method in intervals △mb, corresponding best to a power-law variation of mb(t).
Then, the coefficients kb were averaged and the average value kav gives possibility to determine
the parameters nb of the straight lines lgmb = kav lg t + nb by extending the lines through the
point of intersection with lgmb = kb lg t + nb at the center of the intervals △mb. As a result,
the formula (7) for z becomes as

z = (n̄b′ − n̄b)/[kav lg(b/b
′)] (8)
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Figure 1. Initial m1 and renormalized mb magnetizations as functions of time for the dilute
Ising model with spin concentrations p = 0.95 (a), 0.8 (b), 0.6 (c), 0.5 (d)

Table 1. Values of the dynamic exponent z for systems with different spin concentrations p

b p = 0.5 p = 0.6 p = 0.8 p = 0.95

8 2.638(50) 2.554(45) 2.283(35) 2.246(25)
9 2.659(50) 2.571(50) 2.285(35) 2.240(30)
12 2.689(60) 2.604(60) 2.287(40) 2.226(30)
16 2.699(60) 2.636(60) 2.288(40) 2.213(35)
18 2.690(65) 2.655(65) 2.290(45) 2.210(35)

Sets of values of the exponent z corresponding to different values of b with b′ = 1 were obtained
using the relation (8) (Table 1). For impurity systems the renormalization-group-transformation
procedure reaches the proven asymptote of mb, as a function of the block-partition parameter
b, at larger values of b than in the case of a pure system. So, for blocks with small values b the
presence of defects leeds both to loss of some initial paths of spin connectivity and appearance
of a new paths of spin connectivity which are absent in the original lattice. This effect becomes
less likely with increasing b. On the other hand, the changes of the renormalized magnetization
mb are decreased with time for large values of b and an errors for mb and therefore for the
determination of z are increased. For this reason, we selected for the analysis the values of the
exponent z corresponding to b = 8, 9, 12, 16, and 18.
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Figure 2. Dependence of dynamic exponent z on b for different spin concentrations p

The obtained dependence of z on b (fig. 2) made possible to realize the typical extrapolation
for renormalization-group transformation to the case b → ∞, assuming in concordance with [23]
that

zb = zb=∞ + const · b−1. (9)

The following results were obtained for considered impurity systems: z(0.95) = 2.19 ±
0.05, z(0.8) = 2.29 ± 0.06, z(0.6) = 2.72 ± 0.08, and z(0.5) = 2.75 ± 0.08. Hence it is clear
that the value of the dynamical exponent z for p = 0.6 is virtually identical to the value for
p = 0.5, while for p = 0.95 and 0.8 they are in agreement with each other only to within the
statistical uncertainties in their values.

4. ANALYSIS OF RESULTS AND CONCLUSIONS
We now compare the simulation results with other results of Monte Carlo simulations (MC),
application of field-theoretical method with fixed-dimension d = 3 expansion (FTM), and
experimental (EXP) investigations (Table 2). Values of z from paper [27] with EXP results
agree rather well with our results only for weakly diluted systems with p = 0.95, while a
noticeable difference of the results is observed for strongly disordered systems. Starting from
the universality concept for critical behavior of diluted Ising systems and that the asymptotic
value of z is independent of the dilution degree, the author in [28] obtained the asymptotic value
z = 2.41 using the effective values of the exponent listed in Table II. The off-equilibrium critical
dynamics of the 3D Ising model with the spin concentration varying in a wide range was analyzed
in [29]. Assuming that γ/(νz) and ω/z exponents are dilution independent, the authors obtained
the asymptotic value of z = 2.62(7) taking into account the leading corrections to the scaling
dependence for the dynamical susceptibility. In this case, the value of the exponent ω = 0.50(13)
obtained in [29] is strongly inconsistent with ω = 0.25(10) from the field theory calculations [31]
and not so well agreement with ω = 0.37(6) from Monte Carlo results computed in [16]. In
addition, so small errors for the dynamical critical exponent z = 2.62(7) couldn’t explain given by
authors so large errors for non-universal parameters A(p) and B(p) for strongly diluted samples
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Table 2. Values of the obtained critical exponent z and comparison to other results of Monte
Carlo simulations (MC), field-theoretical method with fixed-dimension d = 3 expansion (FTM),
and experimental (EXP) investigations

0.5 0.6 0.8 0.95

Rosov et al., 1992 [27] EXP 2.18(10)
Prudnikov et al.., 1992 [24] MC 2.65(12) 2.58(9) 2.20(7) 2.19(7)
Heuer, 1993 [28] MC 2.93(3) 2.38(1) 2.16(1)
Parisi et. al., 1999 [29] MC 2.62(7) 2.62(7) 2.62(7) 2.62(7)
Hasenbusch et. al., 2007 [30] MC 2.35(2) 2.35(2)
Prudnikov et al., 1992 [25] FTM 2.237(34)
Prudnikov et al., 2006 [26] FTM 2.1792(13)
Prudnikov et al., 2010 [18] MC 2.208(22) 2.185(17)
present paper 2.75(8) 2.72(8) 2.29(6) 2.19(5)

in comparison with lightly diluted samples. It must be inversely from physics of phenomenon.
In [30] the purely relaxational dynamics (model A) at criticality in three-dimensional disordered
Ising systems whose static critical behaviour belongs to the randomly diluted Ising universality
class was studied. Authors considered the site-diluted and bond-diluted Ising models, and the
±J Ising model along the paramagnetic-ferromagnetic transition line. They performed Monte
Carlo simulations at the critical point using the Metropolis algorithm and studied the dynamic
behaviour in equilibrium at various values of the disorder parameter. The results provide an
evidence of the existence of a unique model-A dynamic universality class which describes the
relaxational critical dynamics in all considered models. In particular, the analysis of the size
dependence of suitably defined autocorrelation times at the critical point provides the estimate
z = 2.35(2) for the universal dynamic critical exponent. Authors also study in [30] the off-
equilibrium relaxational dynamics following a quench from T = ∞ to Tc. In agreement with
the field-theory scenario, the analysis of the off-equilibrium dynamic critical behaviour gave an
estimate of z that is consistent with the equilibrium estimate z = 2.35(2).

In [25] we gave a field-theoretical description of the critical dynamics of dilute magnetic
materials directly for the three-dimensional case. In the two-loop approximation, using the
Pade-Borel summation technique, we obtained the critical exponent z(p) = 2.237, valid for
impurity concentrations much less than the spin-percolation threshold. A similar calculation
performed in the three-loop approximation for diluted Ising system [26] with the use of different
methods of summation gave the value z = 2.1792(13). The comparison of these FTM results with
our present MC results and results in [18,24] shows that they are in good agreement for weakly
diluted systems with p = 0.95 and 0.8 and with experimental value of z = 2.18(10) obtained
in [27] under investigations of the dynamic critical behavior of weakly diluted Ising-like magnet
FepZn1−pF2 with p = 0.9. The simulation results give a much higher values of the dynamic
exponent z for spin concentrations p = 0.6 and 0.5. We attribute this to the fact that for a cubic

lattice of Ising spins with p ≤ p
(imp)
c ≃ 0.69 the impurities form a connecting cluster, which for

T < Tc, coexists with a connecting spin cluster right up to the spin percolation pc = 1− p
(imp)
c .

As a result, the spin correlation length in the region pc ≤ p ≤ p
(imp)
c is not the only scale

determining the behavior of the system near the critical temperature Tc(p)). The character
of impurity scattering of long-wavelength fluctuations of the magnetization also changes. By
analogy with [32,33] and the works of one of us, [34,35], where the influence of the correlation of
the impurities and extended structural defects on the critical properties of disordered systems
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was investigated, there are grounds for believing that in the region pc ≤ p ≤ p
(imp)
c the existence

of an extended impurity structure results in a change in the Harris criterion for the effect of
quenched point defects. For this reason, the change in sign of the heat-capacity exponent α
(from positive to negative) at a transition from pure to impurity critical behavior in Ising-like
magnetic materials does not limit the new type of critical behavior determined by extended
impurity structure.
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