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Abstract. A detailed characterization of the shear layer in a direct numerical simulation of
a Mach 3, separated shock/turbulent boundary layer interaction over a 24° compression ramp
is presented. Similarity solutions are identified in the time-averaged shear layer and the growth
of the shear layer is found to be approximately linear. In addition to the time averaged spatial
organization of the shear layer, the characteristic frequencies and time scales of the large Kelvin—
Helmholtz vortices are determined and are found to be consistent with the energized frequency
content in the pre-multiplied power spectra of the wall pressure. The three-dimensional nature
of the mixing layer vortices are identified using two-dimensional correlation contour plots and a
technique for the identification of individual vortices. The large vortices shed from the separated
region are found to lie in a plane parallel to the ramp surface, but angled at +45° to the
freestream direction.

1. Introduction

The shock/turbulent boundary layer interaction (STBLI) is an almost unavoidable phenomena in
many compressible flow applications such as transonic airfoils, supersonic engine inlets, scramjet
isolators, rocket nozzles and so forth. Strong STBLIs pose a significant problem in engineering
applications because they are characterized by a low-frequency unsteadiness (two orders of
magnitude lower than the turbulence motions of the incoming boundary layer) where the shock
experiences large amplitude excursions from its mean position, causing potentially destructive
fluctuations in temperature and pressure on the vehicle surface [1-4]. A thorough understanding
of the dynamics of the STBLI will help in the development of more accurate predictive models for
design applications and possible control solutions. Although the dynamics of separated STBLIs
have been studied extensively [1,5-14], the overall understanding is still limited to only a general
description of the statistical behaviour of the low-frequency cycle and statistical links between
observed phenomena within the interaction. Models for the unsteadiness have been proposed in
the past, however, an explicit explanation of the driving mechanism for the low-frequency shock
motion has not yet been discovered and much work is still needed in this area of research.

In this paper the focus is on the behaviour and characterization of the shear layer that forms
downstream of the shock and above the region of separation. Previous research has provided
reason to believe that the shear layer plays a significant role in dictating the overall dynamics of
the interaction. For example, Piponniau, Dussauge, Debieve, and Dupont [10] proposed a model
of the low-frequency cycle by assuming that the depletion of the separation bubble is a result of
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Table 1: Characteristics of the incoming boundary layer.

M Reg 5+ Usnt 5 5* 0 H

(ms™') (mm) (mm) (mm)

291 29x10® 3.4 x 10 610 7.1 2.58 0.47  5.49

fluid entrainment by the shear layer, and the authors were able to obtain a reasonable estimate
of the low-frequency of their reflected shock interaction from experimental PIV data. Also, large
vortical structures associated with the Kelvin-Helmholtz type instability are known to exist in
both the reflected shock configuration (Dupont, Piponniau, Sidorenko, and Debieve [15] and
Souverein et al [13]), and the compression ramp configuration (Priebe & Martin [14]). Agostini
et al [16] used cross-correlations between the streamwise position of the shock and the pressure
field in their large-eddy simulations of reflected shock interactions to provide further evidence
that large, periodic vortices are generated in the shear layer and convect downstream. Priebe &
Martin [14] observed a sawtooth-like motion of the reattachment point of the separation bubble
in their direct numerical simulation of a Mach 3 compression ramp and, basing their conclusions
on observations of similar behaviour in incompressible separation bubbles (Kiya & Sasaki [17]),
associated this motion with the passage of these large vortical structures into the downstream
flow.

To lend more insight into the behaviour of the shear layer and how it might contribute to
the low-frequency unsteadiness of STBLI flows, a detailed characterization of the shear layer
in the DNS of a Mach 3 STBLI over a 24° compression ramp is presented here. The paper
is organized as follows. The DNS data set is introduced in section 2. In section 3, the time-
averaged spatial description of the shear layer is presented, and in section 4 the timescales and
spatial organization of the shear layer vortices are described. A summary of conclusions is given
in section 5.

2. Flow and computational method

The analytical results presented in this paper were produced using data from a direct numerical
simulation (DNS) of a shock-turbulent boundary layer interaction (STBLI) where the shock is
produced by a 24° compression ramp. The incoming boundary layer is fully developed with a
freestream Mach number of 2.9. This particular data set has been very well documented in the
paper by Priebe & Martin [14] and the reader is referred to this paper for a complete description
of the computational methods used and of the time-averaged and instantaneous organization of
the flow, as well as a thorough analysis of frequency content and spectra. In summary, upstream
of the shock the freestream velocity and temperature are Up,s = 610m/s and Ti,s = 107K. The
incoming boundary thickness is § = 7.1mm and the Reynolds number based on the momentum
thickness is Reg = 2900. A list of the important parameters of the incoming turbulent boundary
layer are provided in Table 1. The interaction is fully separated in the time-averaged sense and
the separation length defined as the distance along the wall between the mean separation point
and the mean reattachment point is Lg, = 3.09. The computational grid is curvilinear with a
resolution of 1024 x 160 x 128 grid points in the streamwise, spanwise and wall-normal directions
respectively. This corresponds to a physical domain size of approximately (13.7 x 2.0 x 4.4)4.
The inflow conditions were prescribed from a separate auxiliary DNS of a spatially developing,
flat-plate, turbulent boundary layer. The auxiliary DNS was computed on a Cartesian grid of
size 410 x 160 x 112 points with physical dimensions (8.3 x 2.0 x 8.2)d. The same computational
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Figure 1: Compression ramp
mean-flow organization.

method and boundary conditions as were used for the ramp simulation were used for the auxiliary
DNS except that the inflow conditions were assigned using the recycling/rescaling method of
Xu & Martin [18].

The three-dimensional space of the ramp domain is expressed in terms of the standard z, y,
and z coordinate axes where x is in the streamwise direction with respect to the incoming flow,
1y is in the spanwise direction, and z is perpendicular to the wall surface ahead of the ramp. The
velocity components in the three respective directions are indicated by u, v, and w.

The time- and spanwise-averaged organization of the ramp flow is shown in Figure 1. The
average location of the shock is visualized in Figure 1 by the vertical location of maximum
|V P| as a function of . The boundary layer and the shear layer just downstream of the shock
are visualized by the increased levels of the in-plane vorticity wy. Mean streamlines clearly
demonstrate a region of recirculation at the ramp corner. In the DNS computational domain
there are six yz grid planes from which time signals of the primitive flow variables are output at
a high-frequency sample rate and the locations of these planes are indicated in Figure 1. The
high frequency time signals are output at the sampling rate fs = 200Ui,¢/d for a duration of
7660 /Uint-

3. Time-averaged shear layer

The mean shear layer in the DNS data is visualized in Figure 2 by the contour plot of the averaged
two-dimensional turbulent kinetic energy or T K E. In this section, an average quantity refers to
an averaging in both time and the spanwise direction. The mean separation point is zg/d = —2.1
and the mean reattachment point is z,/6 = 0.9. The white line marks the locus of points of
maximum 7 K FE found along the z-direction at each point in . The location of maximum TKFE
can be considered as the approximate centre of the shear layer.

The qualitative organization of the mean shear layer can be described as follows: the shear
layer appears to originate just downstream of the mean separation point, from where it grows
in width until its growth is confined by the wall on the inclined side of the ramp. Its energy
then smears out as it dissipates downstream of reattachment. The shear layer centre appears to
form a straight line between a point near the wall just downstream of the shock foot to a point
about 0.50 above the mean reattachment. Downstream of reattachment, the line of maximum
TKE runs essentially parallel to the ramp wall. This qualitative description is used to define
a coordinate system for the developing portion of the shear layer. The axes of the shear layer
coordinates are denoted by z’ and 2’ where 2/ is oriented along the line of maximum TKE
above the recirculating zone. The z’-axis is perpendicular to 2’ and pointed away from the wall.
The origin of the mixing layer coordinates is the point at which the z’-axis intersects the wall
upstream of the ramp. The distance of the shear layer coordinate’s origin from the ramp corner
is denoted by x,1 = —1.900. The shear layer coordinates are included in Figure 2 and they
make an angle of 16.5° to the computational coordinates. This angle is comparable but slightly
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Figure 2: Spatial organization of the average shear layer. Contours of the time- and spanwise-
averaged two-dimensional kinetic energy, TKE = (u? + w?)/2U2;. Time- and spanwise-
averaged: shock location (solid black); approximate shear layer (white line); and dividing
streamline for separated flow (dashed black).

higher than the shear layer angle of 11.5° found by Dussauge, Piponniau, and Dupont [19] in
the PIV data of reflected shock experiments at Mach 2.3 and Rey = 5100 with flow deviation
of 8.5 and 9°. Delery & Marvin [1] also state that a typical experimental value of the shear
layer’s inclination to the wall is on the order of 11°.

If the shear layer does in fact grow linearly it should be possible to define a similarity variable,
namely ¢ = 2//(2' — x,), that will collapse the velocity profiles to a single similarity solution.
The parameter x/, as indicated in Figure 2 is defined as the (imaginary) geometric origin of the
shear layer and is found by varying the position of z/, along the 2’-axis until what is deemed a
good quality collapse of velocity profiles results. A value of 2/, = 1.416 was found to produce
qualitatively the best collapse. In Figure 3 the profiles of the mean velocity and the two-
dimensional Reynolds stresses u/2, and u/w’ are plotted against the similarity variable (. Here
the v/ and w’ indicate velocity fluctuations where the velocity components are in the direction
of the 2’ and 2’ axes respectively. In Figure 3 the velocity terms are non-dimensionalized by
Uy = 470(m/s) which is the inviscid compression ramp solution for the freestream velocity
behind a shock generated by a 24° ramp at M = 2.9. The velocity U; is therefore an estimate of

(uU,)?

Figure 3: Collapse of profiles for (a) U, (b) w2, and (c) v/’ versus similarity variable (.
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the freestream velocity on the shear layer’s high-speed side. The profiles in Figure 3 are taken
over the interval —1.260 < x < 0.639. The streamwise and cross Reynolds stress profiles are
well described as symmetrical about the mixing layer centre. In Figure 3, a spreading of the
profiles on the low speed side is caused by the proximity of the wall surface. The profiles bear
some resemblance to the profiles of a canonical mixing layer with self similarity as described by
Townsend [20].

Dussauge et al [19] demonstrated with their experimental data of reflected STBLIs that is
possible to estimate the spreading rate of the shear layer from the similarity profile of w2, If
it is assumed that the subsonic and supersonic mixing layers have the same u/2 profile shape, a
comparison can be made between the widths of the two profiles and the compressible spreading
rate can be determined from the incompressible spreading rate by the relation

). - ()
dx’ comp. Cincomp. dx’ incomp.

where Cincomp. and (comp. are the widths of the two w2 profiles at the same value of W/ max(m).
The spreading rate is denoted by dd/dx where 6 is the mixing layer thickness and is not to be
confused with the boundary layer thickness from previous discussions. Using the subsonic mixing
layer profiles of Mehta & Westphal [21], the linear spreading rate dd/dx is estimated as 0.222.
This result is comparable to the estimated spreading rates of 0.287 and 0.188 for 8° and 9.5
reflected shocks respectively by Dussauge et al [19].

4. Large-scale vortices — time and space organization

The velocity profiles of the time-averaged shear layer shown in Figure 3 are characterized
by a low-velocity side and a high-velocity side connected by a single inflection point. The
single inflection point in the mean velocity is associated with an inviscid instability that
produces the large Kelvin—Helmholtz vortices visualized in planar mixing layers (For example
see the visualizations by Mehta & Westphal [21]). Large, spanwise-oriented vortices shedding
downstream of the interaction have been identified in the reflected shock experiments of Dupont,
Piponniau, Sidorenko, and Debieve [15] and Souverein et al [13]. These vortices have also been
identified in incompressible separation bubbles, for example in the experiments of Hillier &
Cherry (1981) and Kiya & Sasaki [17, 23] and in the discrete vortex simulations of Kiya, Sasaki,
and Arie [24]. In addition, Priebe & Martin [14] identified strong, streamwise-oriented vortices
in the same DNS data we use in this analysis. It is apparent that the large vortices occurring in
these separated flows are originating from the shear layer and are being generated by a similar
mechanism as in the planar mixing layer, that is by the inviscid instability in the mean profile.
The characteristic time and length scales of the large-scale vortices are described in this section.

4.1. Vortex characteristic time scale

Information on the average time period of the large vortices can be estimated from cross-
correlations in time between signals of streamwise mass flux (pu)’ and the wall pressure P,
if the following thought experiment is considered. The vortices are assumed to appear in the
shear layer with more or less a regular spacing between them, with one being followed by the
next. Any one of these large vortices in the shear layer will produce a negative fluctuation in the
pressure at the wall surface just beneath the vortex core. It might also be reasonably assumed
that in between successive vortices there is on average a positive fluctuation in the wall pressure.
If a velocity signal is taken from a stationary point in the low-speed side of the shear layer, a
negative fluctuation in velocity will occur in the signal when a vortex lies just above the ‘probe’
location and conversely a positive fluctuation would occur in between successive vortices. With
this reasoning, a correlation between a mass flux signal at a point below the average mixing
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Figure 4: Pre-multiplied power spectrum plots for wall pressure signals at each of the grid
planes indicated in Figure 1: (a)-(f) correspond to grid planes 1-6.

layer centre, and the signal of wall pressure just below that, should provide some information
on the average periodic organization of the shear layer vortices. In fact, the auto-correlations of
wall pressure by Hillier & Cherry [22] and the two-point correlations between velocity and wall
pressure of Kiya & Sasaki [23] in incompressible separated shear layers show that these types of
correlations produce a sinusoidal curve. The time period between successive vortices is the time
period of the sinusoid. (See for example Figure 25 in Kiya & Sasaki [23].)

When performing two-point cross-correlations of the raw DNS time signals, both the smallest
scales of the turbulence and the low-frequency motions of the shock tend to wash out the expected
periodic shape of the mixing layer correlation curves. To retain only the signature of the large
rollers, the data is first band-pass filtered before calculating the correlations. The band-pass
filter is designed based on frequency information in the pre-multiplied power spectra of the
wall-pressure signal. The pre-multiplied power spectral density (PSD) of the time signals of
wall pressure at each of the high-frequency grid planes from Figure 1 are plotted in Figure 4.
In Figure 4a, in the upstream boundary layer, a single broadband peak exists in the spectrum
but, as the boundary layer passes through the interaction region (subsequent figures b-f), the
centre of this peak undergoes a slight shift from a frequency f & 5Uint/Lsep t0 f = 1Uing/ Lscp-
Just downstream of the shock at grid plane 2 shown in Figure 4b a second broadband energy
peak appears at f & 0.03Uins/Lsep. This second peak is associated with the low-frequency
unsteadiness of the shock, and it is seen to disappear downstream of the separated region in
Figures 4e and 4f. In addition to the broadband peaks, tall spikes are also apparent in the
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Table 2: Summary of enhanced correlation results.

GridPlane AT I Zprobe  Cprobe N./N
(Uinf/Lsep) (Lsep/Uinf) (5)
2 0.547 1.828 0.089 -0.009 40 / 3072
3 0.691 1.447 0.196 -0.104 236 / 2720
4 0.849 1.178 0.571 -0.065 584 / 2720
5 0.832 1.202 1.189 — 740 / 2720
6 0.834 1.214 2.176 — 865 / 2720

spectra of Figure 4. As explained by Priebe & Martin [14], these are associated with a forcing
of the turbulence by the recycling inflow method used in the simulation of the auxiliary DNS,
which is in turn used as the inlet condition of the ramp simulation. As it turns out, if the
first harmonic (f ~ 0.35Uins/Lsep) of the rescaling frequency is filtered from the data, the
subsequent harmonics do not effect in any significant way the results of the cross-correlation
analysis. In order to remove from the data the effects of (1) the low-frequency cycle energy, (2)
the first harmonic of the forcing introduced by the inflow condition, and (3) the finest scales
of the turbulence, a finite impulse response (FIR) band-pass filter was designed with high- and
low-frequency cutoff values of 0.4Uiys/Lsep and 10.0Uint/ Lep-

The band-pass filtering alone was not sufficient to bring out the desired sinusoidal shape in the
cross-correlations and so a conditional averaging technique was used in addition to the filtering
to produce ‘enhanced’ correlations. The enhanced correlations were computed as follows: the
time signals of mass flux and wall pressure at each of the grid planes labelled in Figure 1 were
first band-pass filtered, broken up into shorter time segments, and then cross-correlations were
calculated between each pair of corresponding shortened (pu)” and P), time signals. If the short
correlation had the desired sinusoidal shape, it was retained for averaging, and if no such large-
scale pattern was detected the time segments were discarded. This is similar to the method of
enhanced correlations between mass flux and wall-shear stress used by Brown & Thomas [25] in
their studies of the coherent structures in turbulent boundary layers.

Correlations were computed at grid planes 2-6 where streamwise mass flux signals were taken
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Figure 5: Enhanced correlations Ry, ps for (a) grid planes 2-4 and (b) 4-6.
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Figure 7: Average vortex convection velocity
profile compared to the mean velocity profile at
grid plane 4.

from 32 equally spaced points along the spanwise direction at a single wall-normal location. For
grid planes 3-6 the time signals were broken up into ¢t = 5.8 /U, long segments, approximately
2.5 times the period of the central frequency in the wall-pressure spectra. At grid plane 2 slightly
shorter segments were used, as it was found that a time segment duration of ¢ = 5.00/Ujp¢
produced stronger correlations at this plane. For a short correlation to be retained, two criteria
had to be met. First, the cross-correlation curve at zero time lag must be greater than 0.4
(approximately twice the maximum of the non-enhanced correlations). Second, a minimum of
less than —0.2 must occur at some point in the cross-correlation curve. The resulting enhanced
correlations R(,,)p/ are plotted in Figure 5. The average time period AT between vortices is
estimated as the distance between the two minima of the correlation curves, and are summarized
in Table 2. For each grid plane, the timescale, the corresponding shedding frequency, the wall-
normal location of the mass flux signals, and also the number of segments retained for the
enhanced correlations over the total number of segments tested (N./N) are given. It is worth
mentioning that no such periodic pattern was found in the two-point correlations in the incoming

boundary later at grid plane 1.

Two important observations are made from this analysis. First, if the time scales in Table 2
are plotted versus (x — x5)/Lscp (see Figure 6), it is apparent that the time scale grows almost
linearly through the separated region and then levels off to approximately a constant value
downstream of reattachment. The same trend in the development of the time scale was observed
by Kiya & Sasaki [23]. Second, the frequencies reported in Table 2 are located at the approximate
centre of the broad-band peak in the pre-multiplied PSD plots of the wall pressure at each grid
plane. Kiya and Sasa [23] also showed that the broad-band peak in their wall-pressure power
spectrum at reattachment was centred at the average vortex shedding frequency.

4.2. Vortex convection velocity

The frequency reported for grid plane 4 in Table 2 is interpreted as the shedding frequency

of the large-scale vortices from the separated region of the interaction.

It is assumed that

these vortices propagate downstream of reattachment at approximately a constant convection
velocity, as would be consistent with the levelling off of the vortex time scale observed in Figure 6.
The convection velocity of the vortices can be estimated from two-point correlations calculated
between mass-flux signals separated by some known distance in the streamwise direction. The
average time it takes for an eddy to convect from the first signal location to the second is given
by the offset of the peak in the cross-correlation curve. Thus it follows that the eddy convection
velocity is this time lag divided by the distance between the two probes.
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The two-point correlations are calculated between streamwise mass flux signals from adjacent
high-frequency output planes. In this analysis, streamwise mass fluctuations (pu)’ now refer to
fluctuations in the direction of the local mean streamline. Also, correlated signals between
adjacent grid planes are chosen so that they lie on the same mean streamline. To determine an
average convection velocity of the large vortices specifically, the time signals are filtered using
a narrow band-pass FIR filter designed to retain frequencies between f = 0.4Uin¢/Lgep and
2.0Uin¢ / Lsep, or roughly half to twice the average shedding frequency. Three separate estimates
of convection velocity profiles were computed from correlations between grid planes 3 and 4,
between grid planes 4 and 5, and between grid planes 5 and 6. The convection velocity profiles
and the mean velocity profile at grid plane 4 are plotted together in Figure 7. A final value for
the convection velocity is estimated by an average over the three resulting velocity profiles, or
U. = 0.65U;,¢, where U, is in the direction parallel to the ramp surface.

4.3. Vortex spatial organization

The convection velocity 0.65U;,¢ multiplied by the vortex timescale of 0.85 Ly, /Uins at grid plane

4 yields an average spacing of 0.55Lgp, or 1.70 between vortices downstream of reattachment. In

their reflected shock experiments, Dupont et al [15] reported a spacing of approximately 0.4Lgcp.
Additional qualitative information on the average spatial organization of the mixing layer

vortices can also be observed from the two-dimensional (2D) correlations defined by

u) (z + Az, Ay, 2)P'(z,
R = (020020 o)

rms— rms

The 2D correlations are calculated from the time signals at grid plane 4, where z is substituted
with the quantity tU.. The resulting correlation plots therefore describe vortex structures
that are essentially frozen in space as they convect past grid plane 4. Before computing the
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Figure 8: Contour plots of 2D correlations Figure 9: Contour plots of 2D correlations
Rpuy p (a) in the zz-plane at y/é = 0 and Rpwy pr (a) in the rz-plane at y/§ = 0 and
(b) in the zy-plane at z/6 = 0.1. (b) in the zy-plane at z/6 = 0.1.
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Figure 10: Contour plots of the vortex detector I'y for two separate snapshots in time at grid
plane 4. A value of [I';| > 0.63 represents a vortex core.

correlations, the time signals of mass flux and wall pressure are band-pass filtered in time with
a new filter that retains frequencies between 0.4Uint/Lgep and 5.0Uin¢/ Lgep. The same signature
pattern of the large vortices is observed in the correlation plots, regardless of whether the
high-frequency cutoff is set to 10.0Uins/Lsep as in section 4.1, or to 5Uing/Lsep. However, the
pattern is a bit more prominent when the high-frequency cutoff is set to 5.0Uint/Lgscp. Contour
plots of the 2D correlations between (pu)’ and P, are shown in Figure 8. In Figure 8a is
plotted R,y p/ in the zz-plane at y = 0 and in Figure 8b is plotted R, ps in the zy-plane
of z = 0.14. If Taylor’s hypothesis of frozen turbulence is assumed true for the large vortices,
positive tU./d in Figure 8 would correspond to structures downstream of plane 4, and negative
tU./d to structures upstream of plane 4. A large-scale structure is observed that extends in
the wall-normal direction across the entire boundary layer. The ‘footprint’ for this structure is
approximately 2§ in streamwise length. It is at once obvious that the large shear-layer vortices
are three-dimensional in nature, since there appears to be an angle or kink in the structure
pattern (see the zy-plane correlation plot shown in Figure 8b). This asymmetry is even more
apparent in the 2D correlations between wall-normal mass flux and wall-pressure R, p/ that
are plotted in Figure 9 for the same planes. In Figure 9b, an angle of about 45° to the z-axis is
seen in the region of positive correlation.

The R(,y)p: correlations can be interpreted using the same arguments as those that were
used in section 4.1. When a vortex exists just above a probe located in the low-speed side of the
mixing layer, the wall-normal velocity will on average have a zero fluctuation. If the vortex is
just ahead or behind the probe a negative or positive fluctuation respectively might be expected
to occur. In addition, in between vortices, there is zero fluctuation in wall-normal velocity. As a
result, the fluctuations in wall-normal velocity follow the same pattern as the fluctuations in wall
pressure, only shifted ahead in time by a fourth of the time period of the vortices. Returning
to Figure 9b, there is a positive lobe in the 2D correlations that is centred at approximately
tU./d = 0.4, or about a fourth of the average vortex spacing of 1.70 derived earlier, and a lobe
of negative correlations just to the left of tU./d = 0. The results suggest that the vortices are
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angled in the zy-plane instead of spanning the width of the domain in a straight line.

An effort is made to explain the structure appearing in the 2D correlations of Figures 8 and
9 by visualizing individual (frozen) vortices in the time data of grid plane 4. A number of
methods exist for the identification and visualization of vortical structures in turbulent flows.
The goal here is to pick out specifically the large-scale vortices whose vortex cores are oriented
in the spanwise direction in order to keep the pictures clear and not cluttered, for example
by streamwise oriented vortices. Although it is a rather crude method for the identification
of vortices and is generally used for post-processing coarser PIV vector field data (for example
see Dupont et al [15]), the 2D vortex identification criteria I'y of Graftieaux, Michard, and
Grosjean [26] is used here primarily because of its simple and robust formulation. If P is a
point in a 2D vector field, S is some area surrounding P, and M is a point inside S, the vortex
detector I'y is defined by

1 (PM x Uy)) - z
S Jues |[PM]- Uyl

1
T\ (P) as = < / sin O dS 3)
S

where PM is the vector connecting points P and M, Uy is the velocity vector at point M and
Oy is the angle between vectors PM and Uyp;. The parameter I'y will be between —1 and 1
depending on the direction of rotation and it can be shown that a vortex exists when |I'1| > 2/7.
For a rectangular interrogation area with N discrete points inside that area, equation 3 can be
re-expressed as

I'y(P)= % /S sin OydS = %Zsin O (4)
N

The vector field is generated from time signals of u and w at grid plane 4 filtered using the
same filter as for the 2D correlations, and then converted to space in the streamwise direction
using again the variable tU./0 ~ x/0. The constant convection velocity U. = 0.65Uiys is
subtracted from w and the velocity vectors are weighted by the local mean density ratio p(z)/py
to account for compressibility effects across the shear layer in the form of a Morkovin-type
density scaling [27]. Using a square interrogation area of size 0.1582, the vortex detector I'y
is computed using equation (4) on the density-weighted, convecting velocity vector field in the
zy-plane taken from the spanwise centre of grid plane 4. Two separate segments in time of the
vector field and the corresponding contour plot of I'y are plotted in Figure 10 to demonstrate
typical results from the vortex detection method. The large vortices are visualized by the dark
areas, which appear predominantly at the wall-normal distance of 0.55. This result is consistent
with the location of the shear-layer centre at grid plane 4, shown in Figure 2. The individual
vortices seem to be spaced apart by 0.5 to 20.

If I’y is calculated at every zz-plane across the span of grid plane 4, a three-dimensional
representation of the vortices can be constructed. The 3D isosurfaces of I'y = —2/7 at the
same time segments as in Figure 10 are plotted in Figures 11 and 12. From these images the
individual vortices look to be about 0.5 to 15 long, and almost all of the vortices are at an angle of
approximately 45° to the flow. In fact, a number of these vortices are bent in the centre forming
an arrowhead shape. This behaviour explains the structure angle seen in the 2D correlation plots
of Figures 8b and 9b. From Figures 11 and 12 the direction of the angle is equally possible for
forming arrows pointed upstream as for arrows pointed downstream. However, the 2D contour
plots appear to be biased towards the upstream pointed vortices. The vortex cores also seem to
be more or less confined to the xzy-plane at z/§ ~ 0.5.

5. Conclusions
In this paper a thorough characterization of the time-averaged organization of the shear layer in
a Mach 3 STBLI over a 24° compression ramp is presented. This analysis consisted of defining
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Flow Direction

Figure 11: Vortex structure visualized the isosurface of I'y = —2/7 at ‘snapshot 1’.

the time- and spanwise-averaged position of the shear layer. Specifically, it was shown that the
shear layer centre forms a straight line between the origin at the wall just downstream of the
shock and a point just above the mean reattachment point. The angle between the shear layer
and the wall is found to be 16.5°. In addition, it was shown that, above the separated region,
the shear layer grows approximately linearly up to the mean reattachment point. If a coordinate
system is defined where the x-axis is pointed along the centre of the shear layer, a similarity
variable can be defined. The similarity variable collapses the profiles of mean velocity and 2D
Reynolds stresses to a single similarity profile. The linear spreading rate is determined from
the profiles. This same analysis was first done by Dussauge, Piponniau, and Dupont [19] using
their reflected shock PIV data and the current results are comparable to those from the reflected
shock.

In addition to the time-averaged definition of the shear layer orientation, the frequency
content of the shear layer is also analysed. Time and length scales of the large-scale vortices
produced by the shear layer are estimated, as well as the average convection velocity of these
vortices. It is shown that the time period between successive vortices increases almost linearly
through the developing region of the shear layer and then becomes constant downstream of
reattachment. It is apparent that the spreading of the shear layer is caused by the growth of the
large-scale vortices that increase in size until they are confined by the surface of the ramp. The
point of reattachment of the flow might therefore be dependent on the growth rate of the shear
layer and also the angle the shear layer makes to the wall surface. In addition, the development
of the average vortex timescale is consistent with the shift in frequencies that are seen in the
pre-multiplied power spectra of the wall pressure.

Contour plots of correlations between mass flux and wall pressure resulted in a wall signature
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Figure 12: Vortex structure visualized the isosurface of I'y = —2/7 at ‘snapshot 2’.

that suggests the shear layer vortices are not two-dimensional in nature. The visualization of
individual vortices using the vector detector of Graftieaux et al [26] provides proof that this is in
fact the case. The vortex cores just downstream of reattachment are found to generally remain
in a plane parallel to the wall surface, and are angled in either direction approximately 45° from
the direction of the freestream. The shear layer shows resemblance to a canonical mixing layer
in zyz. A distinct difference is that, in the STBLI case, the shear layer structures make the
observed 45° angle with the flow, showing a crisscrossing pattern on streamwise-spanwise planes.
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