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Abstract. The determination of the local Lagrangian evolution of the flow topology in wall-
bounded turbulence, and of the Lagrangian evolution associated with entrainment across the
turbulent / non-turbulent interface into a turbulent boundary layer, require accurate tracking
of a fluid particle and its local velocity gradients. This paper addresses the implementation of
fluid-particle tracking in both a turbulent boundary layer direct numerical simulation and in
a fully developed channel flow simulation. Determination of the sub-grid particle velocity is
performed using both cubic B-spline, four-point Hermite spline and higher-order Hermite spline
interpolation. Both wall-bounded flows show similar oscillations in the Lagrangian tracers of
both velocity and velocity gradients, corresponding to the movement of particles across the
boundaries of computational cells. While these oscillation in the particle velocity are relatively
small and have negligible effect on the particle trajectories for time-steps of the order of CFL
= 0.1, they appear to be the cause of significant oscillations in the evolution of the invariants
of the velocity gradient tensor.

1. Introduction

The study of the temporal evolution of wall-bounded flows is complicated by the range of motion
experienced by the near-wall and outer flow, and the dependence of many fluid properties on
the relative motion of the observer. In order to overcome this challenge many studies have
focused on Galilean invariant quantities such as the velocity gradient tensor A;; (VGT) which
governs the formation of intense vortical filaments and whose invariants (Q 4, R4) can be used
to classify the local topology at any point in the flow, within the framework of critical-point
theory [1], as indicated in Figure 1. Following this methodology a number of researchers have
calculated spiralling conditional mean trajectories (CMT) in @ 4-R 4 space similar to that shown
in Figure 2, with associated time-scales, which represent the non-local mean topological evolution
[2]. Typically these calculations involve the solution of the Lagrangian evolution equations for
the Qa, R4 invariants using the right-hand side of Navier-Stokes equations [3] in an Eulerian
frame of reference, evaluated from direct numerical simulations (DNS) [2, 4, 5]. Alternatively,
experimental measurements of the Eulerian evolution of the invariants can be used, and the
convective terms estimated [6]. This enables an investigation of the mean evolution of the
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invariants, conditioned by their location in the Q-R4 space, for a given fluid domain, but does
not allow the investigation of individual fluid particle traces, or account for the movement of
particles throughout the domain. Given that the evolution of the invariants and their associated
time-scales have been shown to be strongly dependent on the wall-normal position and, in the
outer region of a turbulent boundary layer at Re; ~ 1000, can have evolution times of the
order of 2.5 eddy-turnover times and a convected distance of approximately 20 boundary layer
thickness (d) [5], it remains to be seen how representative these CMT are of the true mean
Lagrangian evolution of the flow, and the extent to which individual fluid particles follow this
mean.
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Figure 1. Three-dimensional local topologies layer and wake region of a turbulent boundary
(Ra,Qa)-plane for incompressible flow. Taken layer from Rey = 730 to 1954. Taken from
from Soria et al. [7] Atkinson et al. 2012 [5].

The Lagrangian evolution of individual fluid particles is also of interest when it comes to
the study of the entrainment of irrotational fluid into a turbulent flow, such as the interface
between turbulent and non-turbulent (T/NT) regions of a turbulent boundary layer, which
have been shown to extend far into the core of the boundary layer [8]. The dynamics of this
interface play an important role in the entrainment of mass, momentum and passive scalars into a
turbulent flow and in the growth of the boundary layer. Advances in experimental measurement
techniques and access to the high-resolution data of direct numerical simulations has lead to
an increasing interest in the geometry, role of coherent structures and mechanisms associated
with T/NT interfaces in both free and wall-bounded shear flows [9-13]. To date, most of the
research regarding the T /NT interface has focused on the investigation and the classification of
the interface and the surrounding flow, with less attention given to the Lagrangian view of the
entrainment process. For instance, what happens to fluid particles in an irrotational region? how
do they interact with the rotational flow and gain enstrophy? what is the topological evolution
and time-scale associated with this process?

In order to answer these questions about the true topological evolution experienced by fluid
particles in various regions of a turbulent wall-bounded flow, or the evolution and dynamics of
a fluid particle as it is entrained across the T/NT interface, it is necessary to implement fluid-
particle tracking and thereby determine the Lagrangian evolution of the VGT as it follows a
particle at each time step of a DNS of the wall-bounded flow. Fluid-particle tracking has received
significant attention in DNS of homogeneous isotropic turbulence [14, 15] but, with the exception
of [16], presumably owing to the higher computational demands, it has received relatively little
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attention in DNS of wall-bounded flows. In this paper we investigate the implementation of
particle tracking in both a turbulent boundary layer and a fully developed channel flow, and
examine the influence of different interpolation and particle time-marching approaches on the
calculated particle paths, and the Lagrangian evolution of the VGT.

2. Particle Tracking in Direct Numerical Simulations of Wall-bounded flows

Codes that perform direct numeric simulations of fluids flow can be modified to enable the
calculation of the Lagrangian evolution of the fluid by treating element or packets of the fluid
as if they were particles that exactly follow the fluid dynamics, so that

dz/dt = @(Z), (1)

where 7 is the particle’s position and @ is the fluid flow velocity [14]. Given the simplicity of
the above equation there should be no need to modify the time-marching of the principle code,
assuming that it resolves all the relevant time-scales of the fluid flow. However, if during the
time-marching the code uses an implicit or predictor step, a decision must be made as to whether
or not to increment particle position at each intermediate step, assuming continuity is enforced
at each step, and then re-calculate the particle velocity, or to only update the particle position
at the end of the time-step. This later option only involves the use of the higher-order-accurate
velocity fields, but will likely require a small overall time-step and more computation in order to
achieve an accurate particle trajectory. Ultimately the accuracy of the fluid particle dynamics
and the calculated particle trajectory will depend on both the magnitude of the time-step and
the accuracy with which the velocity (%) at the particle location can be determined from the
computational cells of the fluid simulation. Assuming that the velocity components at the faces of
each cell are calculated to a sufficient accuracy to capture the dynamics of the fluid, the accuracy
of the particle velocity will still depend on the numerical interpolation technique used to compute
the sub-cell velocity components. Owing to the expense of direct three-dimensional interpolation,
such interpolation is typically determined via successive one-dimensional interpolations of the
required grid points along each axis, which can also be advantageous when it comes to the
interpolation of particle velocity from a computational domain that is split across a series of
processors nodes.

Optimal implementation of particle tracking depends on the DNS code in which the tracking
is to be performed. In the present case, fluid-particle tracking is to be implemented both in
the high-resolution incompressible boundary layer code, and in the fully developed channel code
developed by the School of Aeronautics at the Universidad Politécnica de Madrid. Simulation
of the turbulent boundary layer is performed using a fractional-step method with a three-step
Runge-Kutta scheme for time-marching that is second-order accurate for velocity, and enables
the use of variable pressure gradients and time-dependent boundary conditions [17]. Convective
and viscous terms in the streamwise (x) and wall-normal (y) directions are calculated using
staggered three-point compact finite differences. The computational domain is periodic in the
span-wise (z) direction with velocity and pressure components expanded in a Fourier series
so that the span-wise gradient can be calculated using spectral methods with the 2/3 rule to
prevent aliasing. A pressure correction is applied using the Poisson equation at each sub-step of
the Runge-Kutta. Velocity gradients and divergence for the Poisson correction are calculated by
centred second-order finite differences in the z,y directions and spectral in the z direction. The
present version of the code uses a combination of multi-processing (OMP) and message passing
(MPI) for hybrid multi-thread and multi-core parallel processing [18] with the decomposition of
the computational domain alternating between cross-stream y, z slabs and stream-wise pencils.
Tracking is carried out in the slab decomposition, so that communication is only required in the
streamwise direction.
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The channel-flow simulations are performed using the established pseudospectral method of
Kim et al [19] with particle tracking incorporated into the parallel code of Hoyas & Jiménez
[20]. Homogeneity in both the stream-wise and span-wise directions allows the pseudospectral
solution of the Navier-Stokes equations rewritten in terms of wall-normal vorticity w, and the
Laplacian of v, hence eliminating the need for pressure. While computationally efficient in
terms of the fluid phase, this formulation requires the generation of a realisable velocity field
u;(z,y, z) in order to interpolate for the velocity at each particle. As in the case of the boundary
layer, particle positions and velocities are updated at each substage of a semi-implicit third-
order Runge-Kutta time marching scheme, hence requiring the generation of the fluid velocity
field at each sub-step. In this formulation, derivatives in both x and z directions are handled
spectrally, while wall-normal derivatives are computed via a fourth-order seven-point compact
finite difference.

3. Sub-grid Interpolation methods

For structured grids, a variety of techniques can be used for sub-cell interpolation. If the
parent simulation code involves periodic dimensions in an incompressible flow field, a spectral
interpolation can be performed with no interpolation error for all scales resolved by the grid.
For non-periodic dimensions compact (spectral-like) interpolation schemes such as those found
in [21] and [22] may be used. It is important to note that, while providing excellent interpolation
accuracy, both the spectral and compact methods involve significant computational cost that
must be repeated for every particle in the domain at each time-step or Runge-Kutta sub-step.
Previous applications of fluid particle tracking in DNS of turbulent flows have typically used
more computationally efficient and scalable explicit Basis- or Hermite-spline based interpolation
schemes [14, 16] with Choi et al. [16] demonstrating that a four-point Hermite interpolation
(degree = 8) provides results similar to the far more expensive spectral interpolation, albeit
with derivatives at each grid point evaluated spectrally. Recent work of Stegeman et al. [23]
indicates that even higher-order Hermite interpolation is required if the interpolation error is to
be limited to only a few percent at the smallest wavenumber of the computation. Only the use
of Basis and Hermite splines will be consider in this paper.

While both Basis- and Hermite-spline interpolation involves fitting and evaluating a local
piecewise polynomial, Hermite splines require the value of the function (in this case velocity)
and its derivatives at the two grid points nearest to the target location of the interpolation. In
contrast Basis or B-splines represent a recursion of only the target quantity at multiple grid
points.

Consider a scalar function (e.g. a single component of the fluid velocity) f (z) sampled with
N points over a uniform grid {{z;} : i € [0, N)} with spacing A such that f; = f(x;). A Hermite
spline interpolation operator of degree M is defined as

M-1
fr(@) =) api?, (2)
p=0

where the parametric position & between two consecutive nodes is defined from the spatial
position z as
T — T
A

The polynomial coefficients a, are determined from the boundary conditions of the scalar and
its derivatives at £ = 0 and 1:
0% fr(y)  0°f (xn + Ady)

S = 55 where &, ={0,1}, a ={0,..., K —1}. (4)

T = where z, <z < zp41. (3)
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This ensures that the derivatives of the fitted spline correspond to the derivative of f(x) and
are continuous across grid points up to an order K = M/2. The boundary derivatives of the
sampled function are determined by a central differencing method with an order K such that

the spline coefficients a,, are a linear function of the set of sampled points { Jick /25 fivk )2 H},
K+1

ap =Y pafnre-K/2 (5)
q=0

Substituting the above expression for the spline coefficients into Equation (2) the spline can be
presented as

M-1 [K+1
f] (:E) = Z Z Cp,qfn—l—g—K/Z jpa (6)
p=0 q=0

so that each spline of degree M has an array of (M — 1) x (K +1) = (M? + M — 2) /2 unique
coefficients ¢, 4. Interpolation of a three-dimensional function can then be performed via
successive one-dimensional interpolations of the required grid points along each axis. Given
that the spline represents a piecewise polynomial, it can also be used to determine the gradient
of a scalar at a given interpolated location, albeit at lower order of accuracy. Both this method
and the interpolation of the velocity gradient from scalar fields of each component of du;/0x;
are examined in section 5.

From the above definition, a cubic Hermite spline consists of order M=4, and requires the
calculation to second-order accuracy of derivatives up to first order at the nearest grid points.
This can be obtained from a second-order central difference. Following the formulation of
Equation (6) a cubic B-spline will have pre-determined coefficients

-1 3 -3 1
Lo_LI'3 6 3 0
P76 -3 0 3 0

1 4 1 0

An alternative form to this Hermite interpolation was considered in the turbulent channel
flow, where rather than using higher-order derivative boundary conditions at the two nearest
grid points, a higher-order interpolation was instead performed using the zero- and first-order
derivatives at the four nearest grid points [24]. In one dimension, a four-point Hermite spline
can be represented as

4
fl(f) = ZHp(j)fq+ZGp(j)£|p’ (7)
p=1

where H and G are basis functions and f and all its first-order derivatives are evaluated at the
grid points.

The relative error of both Basis- and Hermite-spline interpolation is due to the truncation
error of the polynomial approximation as well as the error in the finite-difference approximation
of the boundary derivatives in the case of the Hermite spline. This error can be explored using
a plane-wave error analysis which provides the transfer function of the spline interpolation
operator. A continuous plane-wave with a biased phase can be expressed in terms of the
parametric coordinate system as

[ (3, kA, @) = AeF@ntAD+T0 where ¢ € [—m, 7). (8)
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Figure 3. Relative magnitude of interpolation error for Cubic (Degree = 4) Hermite and B-spline
interpolation.
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Substituting Equation (8) into Equation (6), the interpolated value can be expressed as

) . M-1 [(K+1 )
fr (.’IVZ, kA, ¢) _ Aelk‘(xn+A£E)el¢ Z Z Cp7q€1kA(q7K/2) P (9)
p=0 q=0

The difference between the true value of the plane wave and its interpolated value can be
determined from a Monte Carlo simulation in the parameter space consisting of the parametric
wavenumber kA, the phase ¢, and the location of the interpolated point & relative to the nearest
grid point. Figure 3 shows the magnitude of the interpolation error, defined as the magnitude
of the difference between the interpolated value f;(Z) and the true value of the scalar f(&) at
the same location with respect to the grid points. Not surprisingly the error increases as the
distance between the interpolation point and the grid points increases, for both Hermite and
B-splines, particular at higher wavenumbers. This change is far more gradual in the case of the
B-spline but, as shown in Figure 4, the total error in the Hermite spline is lower than that of
the B-spine for the same wavenumber.
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From Equation 9, a complex transfer function for this interpolation can be defined as

. fr@0) SRS ka2 |
T] (.’E, k?A) = m == pzzo C;) Cp,q€ T, (10)

which is only a function of the interpolation position & and the relative wavenumber KA. The
modulus and argument of the transfer function defines the relative difference in magnitude
and absolute difference in phase between the interpolated plane-wave and the original plane-
wave, respectively. The contour plots in Figure 5 show the modulus and argument for the
Hermite spline. The transfer function of the B-spline is similar, but shows less variation in
interpolation position, as observed by the relative magnitude of the interpolation error. In
both cases the argument of this transfer function suggests that both interpolation schemes may
introduce oscillations in the higher wavenumbers.

The absolute magnitude of these interpolation errors and the effect on the particle trajectories
and the evolution the of VGT and its invariants will depend on the energy content of the scalar
(the fluid-velocity field) at different wavenumbers, the grid spacing, and the chosen degree of the
fitted spline. Figure 6 shows the effect of varying the degree of Hermite interpolation. Assuming
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negligible error in the scalar function at the grid points, a higher-order spline reduces the error
at all wavenumbers. While the reduction in error from a linear (degree = 2) to a cubic (degree
= 4) spline is significant, the incremental reduction in error decreases with higher order. If the
effective cut-off wavenumber of the simulation is taken at kd = 2/3, following the 2/3 rule for
de-aliasing, Figure 6 indicates that the error at this wavenumber should be approximately 22%
for a cubic Hermite spline, decreasing to 5% for a Hermite spline of degree 20.

Higher-order interpolation requires the use of higher-order gradients, either directly in the
case of Hermite interpolation, or through a larger coefficient matrix in the case of B-splines.
Both cases ultimately require a wider interpolation kernel of size Np = M, equal to the degree
of the spline. This significantly increases the computation required for each particle. Given
that the entire fluid phase must be computed for each time-step and that Lagrangian statistics
require the calculation of numerous particles, it is therefore desirable to run the DNS with as
many particles as possible. Naturally, this requires that the additional computation imposed by
the particles be kept to a minimum. The benefits of higher-order interpolation are assessed in
the context of the particle tracers in section 5.

4. Fluid-Particle Tracking Implementation

In order to test the benefits and possible need for high-order interpolation methods and to
enable the processing of high-resolution boundary-layer simulations, the DNS code was modified
to enable the use of Hermite spline interpolation of any specified order for both uniform and
irregular grid spacing. Following the formulation for Hermite splines discussed in section 3,
derivatives up to the required order are calculated at grid points nearest to the particle location
using central or forward- or backward-biased finite-difference schemes, depending on the location
of the particle with respect to the domain boundaries. Coefficients for these finite-difference
schemes were computed for different-order schemes during runtime, following [25].

The velocity of each particle was determined at their initial location before the first Runge—
Kutta time-step by converting one velocity component into physical space, and then performing
three-dimensional interpolation of that velocity component at each particle location, before
considering the next component. Interpolation was performed by first fitting one-dimensional
Hermite splines of order M in the g,z cross-stream directions over a three-dimensional
interpolation kernel of M x M x M points around each particle, with final interpolation performed
in the z direction. Structuring the interpolation in this format has the advantage that when a
particle’s interpolation kernel extends across the boundaries between computational nodes, the
cross-stream interpolation can be handled by separate nodes. This reduces the communication
between nodes to at most M /2 quantities for each velocity component.

Particle positions where updated at the start of each Runge-Kutta sub-step using their
velocity from the end of the previous step. Velocities were then re-interpolated at this updated
particle location after the fluid velocity was updated by the right-hand side of the governing
equation, and after the Poisson correction for the divergence. The positions of all master (centre
of particle is contained in the node) and slave particles (part of the interpolation kernel of a
particle from an adjacent node) are stored for each computational domain, as done by Uhlmann
[26]. With each update of the particle position, a test is performed to see whether a particle or
its interpolation kernel crosses the boundary of its parent node, forcing the transition of a slave
to a master or the formation of a new slave, respectively.

The velocity gradient tensor (VGT) at each particle was evaluated by first determining
the velocity gradients at the centre of each cell using second-order central finite differences,
consistent with the methodology used for the Poisson correction. It was assumed that the error
associated with this scheme would be insignificant in comparison to the error introduction by the
interpolation (at least for lower-order schemes), although this assumption has yet to be tested.
Each component of the VGT was then interpolated following the same procedure used for the
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Table 1. Parameters of the zero-pressure gradient boundary layer DNS. N, N, and N, are the grid sizes
along the three axes, expressed for z in terms of collocation points, with A representing the corresponding
resolutions at their coarsest points.

Re, (Ly, Ly, L,)/6 Az, Ayt Azt Nz, Ny, N, Particles

126 —190 7.6 x 9.0 x 10.5 13.4 x0.33 x 6.2 257 x 315 x 768 1200
137 —800 20.7 x 15.7 x 55.4 13.6 x 0.18 x 12.5 4097 x 315 x 768 28800
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velocity field. Tests were also performed to see if the velocity gradients could be determined from
differentiation of the spline fits as suggested by Yeung and Pope [14], which does not require the
differentiation of the velocity field or additional interpolation, and is therefore far more efficient.
A similar process was performed in the channel flow using both cubic (degree = 4) B-splines
and the four-point Hermite interpolation discussed in section 3. Particle positions and velocities
were similarly computed at each Runge-Kutta sub-step. Pseudo-spectral methods were used to
compute the velocity gradient at each grid point, from which each component of the velocity
gradients tensor was calculated at each particle location via the same spline interpolation.

5. Results

To test the effect of the Hermite spline order and the size of the time-step on the particle
trajectories and on the Lagrangian evolution of the invariants of the VGT, a turbulent boundary
layer DNS was run over two moderate resolution grids whose dimensions and grid spacing are
listed in Table 1. Initial testing was performed on the smaller grid in order to test the basic
implementation of the code and the interpolation before extending the code to more realistic
simulations.

In the absence of known particle trajectories, the accuracy of a given interpolation scheme
was tested based on how much the particle position differed from that produced by a higher-
order interpolation or a shorter time-step At, given that position error is a function of both
the interpolation error and the time-step. The time-step from this point on will be quoted in
terms of Courant-Friedrichs-Lewy number CFL = UAt/Axz, where U is the free-stream velocity
and Az is the length of the computational cell. In addition to this, for an incompressible flow,
the divergence Ou;/0x; measured at the particle location can be used as an indication of the
accuracy of the velocity gradients calculated for each particle. Figure 7 shows the difference
in the divergence obtained when calculating the velocity gradients at each particle from the
gradient of a spline fitted to the velocity field (as suggested by [14]) compared to fitting a
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Figure 8. Particle trajectories calculated in the boundary layer simulation using Hermite splines of
varying order over a series of different time-steps.

separate spline to the gradients of the velocity field at each grid point. Separate interpolation
of each component of the VGT provides a divergence that is typically five orders of magnitude
smaller than that obtained by differentiating the spline. Interpolating each component of the
VGT is considerable more expensive, but provides a far more accurate estimation of the sub-grid
particle velocity gradients.

The behaviour for the different interpolation and time-steps can be illustrated by considering
the behaviour of an individual particle trajectory. Similar patterns were observed for most
particles although, naturally, the degree to which a given particle trajectory diverges for different
interpolation schemes will ultimately depend on the dynamics of the flow field at that time
and position. Figure 8 shows the trajectory followed by a particle started at a wall-normal
position of ¥ = 126.7 using a series of Hermite interpolations. Particle positions and velocities
are updated for each Runge-Kutta time-step with the exception of the final trajectory, where
the particle positions are instead updated using a first-order Euler time marching with CFL
= 0.01. This final trajectory was generated in order to ensure that the use of the velocity
fields inside the Runge-Kutta time-step did not have an adverse effect on the calculation of
the particle’s velocity. Comparison of the trajectories indicates that, for the same interpolation
order, updating the particle position within the Runge-Kutta substeps enables time-steps at
least an order of magnitude longer than for the Euler method, with negligible influence on the
particle trajectory.

Figure 9 shows the variation in particle velocity as a function of time for each of the
interpolation methods discussed above, demonstrating that both velocity and the consequent
position are highly sensitive to the order of interpolation scheme and to the size of the time-
step used in the simulation. The use of linear (degree = 2) interpolation results in significant
oscillations in each component of the particle velocity, which is ultimately responsible for the
difference in the particle trajectory. The use of cubic (degree = 4) interpolation reduces the
amplitude of these oscillations, but the benefit of moving to a degree = 8 is less clear. In all
cases these oscillations maintain approximately the same period and are strongly correlated with
the particle position relative to the Eulerian simulation grid points.

The Lagrangian evolution of the 4, R4 invariants of the VGT following the same particle
are shown in Figure 10 where the trajectories originate in the top left corner of the domain,
which corresponds to the particle being in a region of stable focus stretching (see Figure 1). The
invariants shown have been normalised by the mean of the second invariant of the rate of rotation
tensor Qy, which is directly proportional to the enstrophy [5]. While it is not clear what the
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Figure 9. Particle velocity calculated in the Figure 10. Lagrangian evolution of Qa, Ra
boundary layer simulation from Hermite splines invariants of the velocity gradient tensor in the
of varying order over a series of different time- boundary layer simulation calculated for a single
steps. particle using Hermite splines of varying order

over a series of different time-steps.

Re: (Lg Ly, L,)/6 Axt Ayt Azt N, N, N, Particles
2000 2r X2 X 10 x9 x5 1536 x 633 x 1536  7.296 x 10°

Table 2. Parameters for channel flow tests. Nomenclature as given in table 1.

Lagrangian trajectory of the invariants of an individual particle should look like, results shows a
similar pattern of oscillation to the particle velocity. This oscillation is again reduced by using a
higher-order interpolation although, unlike in the case of the particle velocity, these oscillations
continue to reduce up to an interpolation degree of at least 8. This decreased oscillation for
higher-degree splines suggests that the oscillations are at least partly due to the interpolation
method.

The channel flow has been tested most extensively in the configuration given in Table 2.
Figure 11 illustrates oscillations in the time series of quantities interpolated using both cubic
B-splines and four-point Hermite splines. As in the case of the boundary layer, these oscillations
do not correspond to non-monotonic behaviour of the unsteady flow in the surrounding grid
points. As shown by Figure 12, oscillations in the velocity gradients are more noticeable. It
should be noted that the magnitude of the oscillations is typically small but, as shown in Figure
10, they can have a significant effect on the observed Lagrangian evolution of the invariants,
and will have consequences when it comes to the calculation of Lagrangian accelerations.

Despite significant differences between the resolution and the computation of velocity
gradients in both the boundary layer and channel flow simulation, the similarity in the computed
Lagrangian velocity and velocity gradient tracers suggests that the accuracy of the Lagrangian
statistics is highly sensitive to the interpolation scheme. Given the shape of the transfer function
of the interpolation method (see Figure 5) and the spacing of these oscillation with respect to
the grid points, it is likely that these oscillations are purely the result of the sub-grid velocity
interpolations. It may therefore be possible to low-pass filter these oscillations without effecting
the Lagrangian statistics, assuming that the time-step of the simulation is small enough that
these oscillations do not significantly influence the calculated particle trajectory, and given
that there should be no appreciable energy in the fluid phase for parametric wavenumbers
kA > 27 /3 under the 2/3 de-aliasing of the DNS. Technically, this filtering should be a function
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Figure 11. Time series of wall-normal velocity v for representative particles initialized at grid points on
a cross-stream plane of the channel at Re, = 2000. CFL = 0.3
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Figure 12. Time series of wall-normal vorticity w, for representative particles initialized at grid points
on a cross-stream plane of the channel at Re, = 2000. CFL=0.3

of positional variation in all three-directions and not a function of time. Given that the size of
the computational cell varies with the wall-normal position, and that oscillations occur as the
particle moves with respect to each face of the computational cell, the implementation of this
filtering is non-trivial.

6. Conclusions

In order to enable the calculation of Lagrangian statistics and time-scale in wall-bounded flows,
the Lagrangian tracking of fluid particles has been implemented in direct numerical simulation
codes for both a boundary layer and for a fully developed channel flow. Sub-grid interpolation
was implemented using both cubic B-spline, four-point Hermite and higher-order Hermite
interpolation schemes. Despite significant differences in cell size, the computation of velocity
gradients, and the implementation of the interpolation, the particle velocities and gradients in
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both the boundary layer and the channel flow showed similar oscillations in their Lagrangian
tracers. These oscillations are highly correlated with the movement of particles with respect
to the computation grid and, given the similar pattern in the phase error of the interpolation
method, appear to be due to the sub-grid interpolation method. While these oscillations in
the particle velocity are relatively small and have negligible effect on the particle trajectories
for time-steps on the order of CFL = 0.1, they appear to be the cause of more significant
oscillations in the evolution of the invariants of the velocity gradient tensor. The extent to
which these interpolation errors may influence the Lagrangian statistics is not yet clear.
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