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Abstract. Thin ZnO films were grown by pulsed laser deposition on four different substrates:
sapphire (0 0 0 1), MgO (1 0 0), fused silica and nanocrystalline synthetic diamond.
Defect studies by slow positron implantation spectroscopy (SPIS) revealed significantly higher
concentration of defects in the studied films when compared to a bulk ZnO single crystal.
The concentration of defects in the films deposited on single crystal sapphire and MgO
substrates is higher than in the films deposited on amorphous fused silica substrate and
nanocrystalline synthetic diamond. Furthermore, the effect of deposition temperature on film
quality was investigated in ZnO films deposited on synthetic diamond substrates. Defect studies
performed by SPIS revealed that the concentration of defects firstly decreases with increasing
deposition temperature, but at too high deposition temperatures it increases again. The lowest
concentration of defects was found in the film deposited at 450◦C.

1. Introduction
Preparation of high-quality ZnO films is of great interest for efficient excitonic UV lasers
exploiting externally pumped lasing observed in epitaxial ZnO films at room temperature [1].
Furthermore, ZnO films have favorable properties for application in flat panel displays and
optical coatings for sollar cells [2]. Several techniques for production of ZnO films have been
developed so far. In this work we employed pulsed laser deposition (PLD) [3] which enables the
production of high-quality ZnO films at lower temperatures than other methods.

2. Experimental details
Samples were prepared in stainless-steel vacuum chamber with base pressure of 2 × 10−4 Pa.
Deposition process was carried out using 266 nm frequency-quadrupled Nd:YAG laser providing
90 mJ pulses of 6 ns duration. High-purity ceramic ZnO target was ablated by laser light with
fluence of 2.8 Jcm−2 at distance of 55 mm from the substrate. Repetition rate of laser was
set to 10 Hz and each sample was grown as a result of 5200 shots. Ambient atmosphere of
5N-pure oxygen at pressure of 10 Pa and 40 sccm flow rate was present during the film growth.
These parameters are favorable for ZnO p-type doping in order to avoid compensation by oxygen
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vacancies [4]. Four different substrates were used: sapphire (0 0 0 1), MgO (1 0 0) and fused silica
(FS) supplied by MaTecK GmbH and nanocrystalline diamond (NCD) film on silicon (1 0 0)
wafer. NCD films were prepared using plasma-enhanced linear antennas microwave CVD system
[5]. Prior to deposition, the substrates except of NCD were baked out in vacuum at 950◦C for
5 min to remove remaining surface contamination. ZnO thin films were deposited on sapphire,
MgO and FS at 300◦C and subsequently annealed in situ at 750◦C in 10 Pa oxygen temperature.
Another set of films was deposited on NCD at various temperatures. Bulk ZnO (0 0 0 1) single
crystal, supplied by MaTecK GmbH, with O-terminated surface grown by hydrothermal method
was used as reference material for slow positron implantation spectroscopy (SPIS) measurements.

SPIS studies were carried out using slow positron beam SPONSOR [6] with positron energy
adjustable in the range from 30 eV to 36 keV. Doppler broadening (DB) of annihilation line was
measured by high-purity germanium detector with resolution of 1.09(1) keV at 511 keV. DB was
evaluated using the line shape S parameter. Central energy interval used for the calculation of
the value of S parameter was selected so that S parameter for the reference ZnO bulk single
crystal S0 was close to 0.5, where it is most sensitive to changes in line shape of the annihilation
peak. Actual value S0 = 0.5068(5) was calculated from the energy region 510.07-511.93 keV.

3. Results
XRD investigations revealed that ZnO films deposited on all substrates exhibit wurtzite
structure. ZnO films deposited on single crystal substrates (MgO, sapphire) exhibit local epitaxy
while films deposited on amorphous FS or NCD show (0 0 0 1) fiber texture with random lateral
orientation of crystallites in the plane of substrate [7, 8]. Comparison of S(E) curves, i.e.
dependence of S parameter on positron implantation energy E, for ZnO films deposited on
various substrates at 300◦C is shown in figure 1(a).

Figure 1. (a) S(E) curves measured on ZnO films deposited on various substrates at 300◦C.
(b) Fitted S parameters for ZnO layers on various substrates and the reference ZnO crystal.

At the lowest energy E = 0.03 keV almost all positrons annihilate on the surface of ZnO
films. With increasing energy positrons penetrate into the ZnO films and subsequently into the
substrate. The largest fraction of positron annihilates in ZnO films at E ∼ 3 keV. At energies
E > 20 keV virtually all positrons annihilate in the substrate and measured S parameters
approach bulk values for corresponding substrates. FS and NCD substrates exhibit significantly
higher S parameters than MgO or sapphire due to lower electron density in inter-atomic regions.
Measured data were analyzed by VEPFIT software package [9] using two-layer model system
(ZnO film and substrate). Fitted values for the S parameter and mean positron diffusion length
L+ for the ZnO model layer are shown in figures 1(b) and 2(a), respectively. Trapping rate K
for positrons trapping at defects in ZnO films were calculated as K = 1/τB[(L+0/L+)2 − 1],
where L+ is the positron diffusion length measured in the ZnO film, L+0 = 280 nm is the
positron diffusion length in a perfect ZnO crystal obtained by theoretical calculations [10] and
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τB = 154 ps is the bulk positron lifetime in ZnO [11].
Trapping rates for films grown on different substrates and the reference ZnO crystal

are compared in figure 2(b). The reference ZnO crystal exhibits positron diffusion length
L+ = 59 nm which is similar to the value reported by Uedono et al [12]. The fact that
L+ < L+0 indicates that the hydrothermally grown crystal contains positron trapping defects.
This was confirmed by positron lifetime spectroscopy [13, 14] and the defects were identified as
Zn vacancies associated with H atoms [11].
S parameters and trapping rates for all ZnO films are higher than those in the ZnO crystal

while the positron diffusion lengths are shorter. Thus, all ZnO films contain higher concentration
of defects than the reference ZnO crystal. While ZnO films likely contain point defects similar
to the reference ZnO crystal, additional types of defects may be present in polycrystalline films:
(i) misfit dislocations compensating the lattice mismatch between the film and the substrate and
(ii) open-volume defects at grain boundaries or crystallite interfaces. Moreover the concentration
of defects in the ZnO films deposited on single crystal MgO and sapphire substrates is higher than
in the films deposited on amorphous FS and NCD diamond substrates which is demonstrated
by considerably higher S parameters, see figure 1(b). This is supported also by lower L+ and
higher K values for the films deposited on single crystalline substrates, see figure 2.

Figure 2. Comparison of parameters of ZnO films deposited on various substrates and reference
ZnO single crystal: (a) mean positron diffusion length, (b) positron trapping rate.

Furthermore, the influence of deposition temperature on ZnO film properties was studied on
films deposited on NCD substrate. Films at four different temperatures were deposited: room
temperature, 300◦C, 450◦C and 600◦C. Measured S(E) curves are plotted in figure 3(a).

Figure 3. (a) S(E) curves for ZnO films deposited at different temperatures on NCD. (b)
Temperature dependence of the S parameter (blue triangles) and positron diffusion length (red
circles) of ZnO layer deposited on NCD.

There is evident difference between the S(E) curve of film deposited at room temperature and
that of films deposited at elevated temperatures. Measured data were again analyzed by VEPFIT
software and results are summarized in figure 3(b). ZnO film deposited at room temperature
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exhibits the lowest diffusion length and therefore contains the highest concentration of defects.
On the other hand, the highest positron diffusion length and lowest value of S parameter,
indicating the lowest concentration of defects, were observed in film deposited at 450◦C.

4. Discussion
XRD investigations [8] suggested that ZnO films grown on single crystal substrates (MgO,
sapphire) exhibiting local epitaxy are of higher quality. Surprisingly, SPIS measurements
revealed that these films have significantly higher concentration of defects than ZnO films
deposited on FS and NCD. ZnO films deposited on single crystalline substrates exhibit well
defined orientation with respect to the substrates. This inevitably results in formation of misfit
dislocations compensating lattice mismatch between the substrate and ZnO layer while in the
films deposited on FS and NCD the lattice mismatch is to some extent released by various
orientation and tilting of the crystallites. Hence, SPIS measurements detect higher concentration
of defects in film deposited on MgO and sapphire due to higher density of misfit dislocations.

Studies of ZnO films deposited on NC at various temperatures revealed that the film deposited
at 450◦C exhibits the lowest concentration of defects. Deposition at elevated temperatures
increases chance of atoms to reach proper position in crystal lattice corresponding to the
lowest interface energy. XRD investigations revealed that the mean size of crystallites increases
with increasing temperature of deposition and therefore concentration of misfit defects at film-
substrate interface increases as well. Minimum in temperature dependence of concentration of
defects observed at 450◦C is created as result of these antagonistic effects.

5. Conclusions
ZnO films deposited on single crystal MgO and sapphire substrates exhibit significantly higher
concentration of defects than films deposited on amorphous FS and NCD substrates due to
presence of misfit dislocations at film-substrate interface.

Influence of deposition temperature on properties of ZnO films deposited on NCD were
investigated. The lowest concentration of defects was found in the film deposited at 450◦C.
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