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Abstract. In previous papers, the quantum behavior of matter has been shown to emerge as
a result of its permanent interaction with the random zero-point radiation field. Fundamental
results, such as the Schrödinger and the Heisenberg formalism, have been derived within this
framework. Further, the theory has been shown to provide the basic qed formulas for the
radiative corrections, as well as an explanation for entanglement in bipartite systems.

This paper addresses the problem of spin from the same perspective. The zero-point field is
shown to produce a helicoidal motion of the electron, through the torque exerted by the electric
field modes of a given circular polarization, which results in an intrinsic angular momentum, of
value ~/2. Associated with it, a magnetic moment with a g-factor of 2 is obtained. This allows
us to identify the spin of the electron as a further emergent property, generated by the action
of the random zero-point field.

1. Introduction
In previous work, the quantum behavior of matter has been shown to emerge as a result of
its continuous interaction with the random zero-point radiation field (zpf). This has been,
in essence, the program of stochastic electrodynamics (sed). Fundamental quantum results,
such as the Schrödinger and the Heisenberg formalism, have been recently obtained within this
framework [1]. Contact has been made with (nonrelativistic) quantum electrodynamics, by
deriving the main formulas for the radiative corrections, notably the Lamb shift and the atomic
lifetimes [1], [2]. Further, the study of bipartite systems has shown the zpf to lie at the origin
of entanglement and the symmetrization postulate [3].

Another most fundamental problem in quantum theory relates to the nature of the spin of
the electron: is it something inherent, as is usually considered, or is it a result of the dynamics,
as has been postulated time and again? A theory intended to explain the genesis of quantization
should be expected to provide an answer to this query, instead of a priori taking the spin as
one more innate property of the particle, like the mass or the electric charge.

During the initial period of sed [4] the electron was in fact taken as a spinless particle,
the only exception being the analysis by Braffort and Taroni [5] of some effects due to spin.
As of 1981, a number of models for spin as an acquired property have been proposed [6]-[12]
(there were of course earlier models, such as that of Huang [13]). Though based on classical
models, the various sed calculations exhibit the zpf as the source of a kind of (nonrelativistic)
zitterbewegung that gives rise to an intrinsic angular momentum of the electron, with a mean
square value of order ~2 and projections of order ~.

This paper re-addresses the problem of spin from the perspective offered by present sed.
Before entering into the subject matter, a brief introduction to recent work on sed is provided,
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focusing on those results that will be used for the present derivations. It then will be shown
that in addition to giving rise to position, momentum and energy fluctuations, the zpf induces a
helicoidal motion, as a result of the torque exerted by the random Lorentz (electric) force on the
particle. The field modes of a given circular polarization are shown to give rise to an (intrinsic)
spin angular momentum of the electron, of value ~/2. Additionally, the corresponding magnetic
moment with a g-factor of 2 is derived. The paper ends with some brief additional remarks on
the physical meaning of the results obtained.

2. Emergence of quantum mechanics
2.1. The original stochastic problem
This section contains the basic steps that take us from the original dynamical equation for the
particle embedded in the random zpf, to the Schrödinger formulation of quantum mechanics
[1]. The system under study is a particle of mass m and charge e —typically an electron—,
subject to an external (binding) potential V in addition to the stationary zpf. The motion of
the particle is described by

mẍ = f(x) +mτ
...
x + eE(t), (1)

where mτ
...
x , with τ = 2e2/3mc3, represents the reaction force due to Larmor radiation, and f(x)

is the force due to the potential V . A nonrelativistic description is assumed to be sufficient,
so that the magnetic term of the Lorentz force is neglected. The random field E(t) is taken in
the long-wavelength approximation, anticipating that those field modes that become eventually
dominant have wavelengths much larger than the characteristic dimensions of the motion. The

random field has zero mean value, i.e., E(t)
(i)

= 0, where (·)(i) denotes the average over all
realizations (i) of the field, and a spectral energy density corresponding to a mean energy ~ω/2
per frequency mode, i. e.,

ρ0(ω) =
ω2

π2c3
1

2
~ω =

~ω3

2π2c3
. (2)

This expression corresponds to the autocorrelation function

Ei(t)Ej(t′)
(i)

= δijϕ(t− t′), (3)

where

ϕ(t− t′) =
4π

3

∫ ∞
0

ρ0(ω) cosω(t− t′)dω. (4)

If there is an extra component due to an external field, as could be a thermal equilibrium
radiation or any other excitation of the field modes, the corresponding contribution must be
added to ρ0(ω) in equation (2).

2.2. Statistical description from phase space to configuration space
The detailed motion of a single particle depends on the specific realization (i) of the field,
which is unknown. Therefore a statistical description is made, by constructing the equation of
evolution for the particle phase-space probability density Q(x,p, t), taking the zpf as given and
starting from the dynamical equations obtained from (1),

mẋ = p, ṗ = f(x) +mτ
...
x + eE(t). (5)

Through a standard projection procedure [14], the generalized Fokker-Planck equation (gfpe)

∂Q

∂t
+

1

m

∂

∂xi
piQ+

∂

∂pi
fiQ+mτ

∂

∂pi

...
x iQ = e2

∂

∂pi
D̂iQ (6)
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is obtained, with the diffusion operator D̂(t) defined by means of the expression

D̂i(t)Q = P̂EiĜ
∂

∂pj
Ej

∞∑
k=0

[
eĜ

∂

∂pl
(1− P̂ )El

]2k
Q, (7)

and the projection operator P̂ and the evolution operator Ĝ given by

P̂A = A
(i)
, ĜA(x,p, t) =

∫ t

−∞
e−L̂(t−t

′)A(x,p, t′)dt′, (8)

where L̂ is

L̂ =
1

m

∂

∂xi
pi +

∂

∂pi
(fi +mτ

...
x i) . (9)

The operator e−L̂(t−t
′) in equation (8) makes x(t′), p(t′) (t′ < t) evolve towards x(t), p(t) as

final conditions, following a deterministic path.
Right after particle and field start to interact, the system is far from equilibrium. In this

initial regime the main effect of the zpf on the particle is due to the high-frequency modes,
which produce violent accelerations and randomize the motion. Eventually, however (after a
transient period which is estimated to be of the order of ~/mc2 ' 10−20 s for an electron), the
interplay between the electric field force and radiation reaction is expected to drive the system
close to equilibrium. In this new (time-reversible) regime the Markovian approximation applies,
and the gfpe (6) reduces to a true Fokker-Planck equation,

∂Q

∂t
+

1

m

∂

∂xi
piQ+

∂

∂pi
(fi +mτ

...
x i)Q =

∂

∂pi
Dpp
ij

∂Q

∂pj
+

∂

∂pi
Dpx
ij

∂Q

∂xj
, (10)

with the diffusion coefficients given to lowest order in e2 by

Dpp
ij = e2

∫ t

−∞
dt′ϕ(t− t′)∂pj

∂p′i
, Dpx

ij = e2
∫ t

−∞
dt′ϕ(t− t′)∂xj

∂p′i
. (11)

A statistical description in configuration space is made in terms of a hierarchy of equations,
obtained by multiplying (10) successively by pki (k = 1, 2, ... , where pi stands for the different
components of the momentum p ) and integrating over momentum space (assuming the integrand
to vanish in the limits). In the time-reversible regime, the radiative terms become small and
tend to balance each other in the mean, so any additional effect they may have on the dynamics
becomes negligible. When the radiationless approximation is made (i. e., to zero order in e2),
the first two equations of the hierarchy can be recast in the form of a Schrödinger-like equation
for a complex function ψ(x, t),

−2η2

m
∇2ψ + V ψ = 2iη

∂ψ

∂t
, (12)

and the corresponding complex conjugates, with ψ∗ψ =
∫∞
−∞ d

3pQ(x,p, t) = ρ(x, t), and η a
free parameter. The value of this parameter is determined by the energy-balance condition that
must hold in the equilibrium regime (see below).
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2.3. Some important relations for average values
Equation (6) (or its Markovian version, (10)) contains a wealth of statistical information about
the dynamics of the system, part of which is lost in the transition to the reduced, radiationless
description in configuration space. To recover some of this information we take the (phase-
space) average of a generic function G(x,p) that has no explicit time dependence. Equation (6)
multiplied from the left by G and integrated over the entire phase space gives thus

d

dt
〈G〉 =

〈
ẋi
∂G
∂xi

〉
+

〈
fi
∂G
∂pi

〉
+mτ

〈
...
x i
∂G
∂pi

〉
− e2

〈
∂G
∂pi
D̂i
〉
. (13)

In particular, for any G = ξ(x,p) representing a classical (‘radiationless’) integral of the motion,
we have

d

dt
〈ξ〉 = mτ

〈
...
x i
∂ξ

∂pi

〉
− e2

〈
∂ξ

∂pi
D̂i
〉
. (14)

In the Markovian limit mentioned above, this equation takes the form

d

dt
〈ξ〉 = mτ

〈
...
x i
∂ξ

∂pi

〉
+

〈
Dpp
ij

∂2ξ

∂pi∂pj

〉
+

〈
Dpx
ij

∂2ξ

∂pi∂xj

〉
, (15)

with the diffusion coefficients given by (11). For instance, for the particle Hamiltonian (defined
without the radiative terms, i. e., to zero order in e2),

H =
1

2m
p2 + V (x), (16)

equation (15) gives
d

dt
〈H〉 = τ 〈...x · p〉+

1

m
〈trDpp〉 . (17)

This equation gives the contributions of the dissipative and diffusive terms to the energy balance.
Stationarity is reached when the terms cancel each other, which should occur when both field
and particle are in their ground state, i.e.,

τ 〈...x · p〉0 = − 1

m
〈trDpp〉0 . (18)

Notice that for the calculation of these terms (to the lowest order of approximation) one must
use the solutions of the Schrödingerlike equation (12), since the system is already in the time-
reversible regime. This means, in particular, that in equations (11) the following replacements
must be made:

∂pj
∂p′i
→ 1

2iη
[x̂′i, p̂j ],

∂xj
∂p′i
→ 1

2iη
[x̂′i, x̂j ]. (19)

Explicit calculation gives that for the energy-balance condition (18) to be satisfied, the
parameter η must have precisely the value η = ~/2 [1]. This is, then, the point of entry of
Planck’s constant into the Schrödinger equation, obtained from (12),

− ~2

2m
∇2ψ + V ψ = i~

∂ψ

∂t
. (20)

The time-reversible and radiationless regime, in which the mechanical system is correctly
described by this equation, is therefore called the quantum regime. Notice that, from this
perspective, ~ provides a direct measure of the intensity of the fluctuations impressed by the
zpf upon the (quantum) particle.
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Let us now go back to equation (15), and apply it to the angular momentum L, which is a
‘classical’ constant of the motion for any central-force problem. By taking ξ =Lij=xipj − xjpi
(i 6= j), we get

d

dt
〈L〉 = mτ 〈x× ...

x〉 −
〈
DA

〉
, (21)

where DA is the antisymmetric tensor with components Dpx
ij −D

px
ji . This equation tells us that

for the angular momentum to be conserved, the radiative terms must cancel each other,

mτ 〈x× ...
x〉 =

〈
DA

〉
. (22)

Finally, for the square of the angular momentum L2, equation (14) gives

d

dt

〈
L2
〉

= mτ

〈
...
x i
∂L2

∂pi

〉
+

〈
Dpp
ij

∂2L2

∂pi∂pj

〉
+

〈
Dpx
ij

∂2L2

∂pi∂xj

〉
, (23)

so that for L2 to be conserved, we must have

mτ

〈
...
x i
∂L2

∂pi

〉
= −

〈
Dpp
ij

∂2L2

∂pi∂pj

〉
−
〈
Dpx
ij

∂2L2

∂pi∂xj

〉
. (24)

These latter results, first proposed in [9], will be used in section 3.1.

2.4.Linear response of the particle in the stationary regime
A close analysis of the stationary states attained by the particle in the time-reversible regime
described above, has proved particularly revealing of some general properties of quantum
systems. For such analysis a more straightforward approach, complementary to the previous
one, has been developed [1], starting again from the same equation of motion (1), and assuming
that any stationary solution of it (characterized by the index α) can be written as an expansion
of the form

xα(t) =
∑
β

x̃αβaαβe
iωαβt, (25)

and similarly for any dynamical variable,

Aα(t) =
∑
β

Ãαβaαβe
iωαβt, (26)

where aαβ stands for the random amplitude of the zpf mode of frequency ωαβ,

Eα(t) =
∑
β

Ẽαβaαβe
iωαβt. (27)

In these equations the coefficients x̃αβ, Ãαβ are in principle functions of the amplitudes aαβ,
and hence stochastic variables. By introducing these expansions into equation (1), the system
is found to respond resonantly to certain field modes (αβ); the rest of the zpf (to be neglected
in the expansions) represents just a background noise. The values of the corresponding ωαβ
(called relevant frequencies), as well as of the coefficients x̃αβ, depend on the specific problem.
By imposing the condition of ergodicity on the stationary solutions, the {x̃αβ} turn out to be
independent of the {aαβ}, which means, according to (25), that the response of the system to
the respective field modes is linear in the field variables. Further, those modes controlling the
stationary states are found to satisfy certain properties, which can be summarized in terms
of the chain rule for the random field coefficients, aαβ′aβ′β′′aβ′′β′′′ · · · aβ(n−1)β = aαβ, whence
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aαβ = eiϕαβ with ϕαβ = φα − φβ a random phase. Similarly for the corresponding relevant
frequencies, the relation ωαβ′ + ωβ′β′′ + ...+ ωβ(n−1)β = ωαβ applies, which means that ωαβ is of
the form

ωαβ = Ωα − Ωβ. (28)

As a result of these properties, the coefficients in the above expansions satisfy a matrix algebra;
thus, for instance, if x̂ is the matrix with elements x̃αβ, we have

(xn)α =
∑
β

(x̃n)αβaαβe
iωαβt, (29)

with (x̃n)αβ given by the element αβ of the corresponding matrix product, (x̃n)αβ = (x̂n)αβ.

It is clear that the time-dependence of xα(t) can be transferred to every single factor x̃αβ,
so that the evolving matrix x̂(t) has as elements the coefficients x̃αβe

iωαβt. This allows to write
the equation satisfied by the stationary solutions in the form

m
d2x̂(t)

dt2
= f̂(t) +mτ

d3x̂(t)

dt3
+ eÊ(t). (30)

In the radiationless approximation, the last two terms are neglected and one is left with

m
d2x̂(t)

dt2
= f̂(t). (31)

With these results one may construct the law of evolution for the matrix Â(t) associated with
the (generic) dynamical variable A; the outcome is

i
dÂ(t)

dt
=
[
Â(t), Ω̂

]
, (32)

with the matrix elements of Ω̂ given by Ωαβ = Ωαδαβ. Notice that, as with the previous derivation
presented in section 2.2, the radiationless approximation has deleted any explicit trace of the
zpf. No stochastic variable is contained in equations (30)-(32); instead, they are expressed in
terms of operators. In section 2.3, the missing value of the paramerter η in equation (12) was
obtained by imposing the energy-balance condition; this led unequivocally to the Schrödinger
equation (20). In the present case, it is again the scale of the solution what is missing in equation
(32). The loss is repaired by, first, finding that the canonical commutator [x̂, p̂], with

p̂ = m
dx̂(t)

dt
= −im

[
x̂(t), Ω̂

]
, (33)

has the universal form [x̂, p̂] = CI, with C constant, and, second, finding the value of C. This is
readily achieved by applying the above equations to the harmonic oscillator of natural frequency
ω0 in its ground state, when it is in equilibrium with the zpf mode of the same frequency. One
thus obtains C = i~, whence

[x̂, p̂] = i~I. (34)

The value of the commutator represents therefore a direct measure of the intensity of the
fluctuations impressed upon the particle by the zpf, just as was concluded in section 2.3. Finally,
from the above results it can be readily seen that the relevant frequencies are given by

ωαβ = Ωα − Ωβ = ~−1 (Eα − Eβ) , (35)

where Eα is the eigenvalue of the Hamiltonian in state α, and the final form of equation (32) is
therefore

i~
dÂ(t)

dt
=
[
Â(t), Ĥ

]
, (36)

i. e., the Heisenberg equation for the operator Â(t).
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3. Revealing the spin of the electron
To disclose the rotational effect of the zpf on the particle, let us briefly go back to the original
(stochastic) equation of motion (1) and rewrite it as

ṗ = f +mτ
...
x + eE(t), (37)

where p = mẋ. We shall consider that there is no external torque; the (central) force can then
be written as f = g(r)x, r = |x| . By taking the vector product of this equation with x we get

d

dt
L = x× ṗ = mτx× ...

x + ex×E, (38)

which gives the instantaneous change of the angular-momentum due to the torque exerted by
both radiation reaction and the random zpf. The average of this expression over the field
realizations is

d

dt
L

(i)
= mτ(x× ...

x)
(i)

+ e(x×E)
(i)
. (39)

Since in the quantum regime the dynamical variables satisfy the condition of ergodicity,
according to our discussion in section 2.4, this equation is equivalent to (21). Equation (39),
however, has the advantage of allowing us to directly identify the last term as the effective
torque exerted by the Lorentz force of the zpf on the particle. For the angular momentum to
be conserved, we must have (compare with equation (22))

mτ(x× ...
x)

(i)
= −e(x×E)

(i)
. (40)

Let us assume that the system is in its ground state, so that there is no orbital angular
momentum. Making the usual substitution ṗ → f (which is valid to zero order in τ ∼ e2)
and writing f as g(r)x, we get explicitly

τg(r)L
(i)
∣∣∣
0

= −me (x×E)
(i)
∣∣∣
0
. (41)

Since only the fluctuating component of x can contribute to the average (x×E)
(i)

(because
E(t) is purely random), it is clear that all the angular momentum thus generated is due to the
random motion around the mean trajectory followed by the particle; thus, it is independent of
the system of coordinates, and has an ‘internal’ nature, usualy taken as intrinsic.

3.1. The electron’s intrinsic angular momentum
The above discussion suggests looking for a procedure that can bring to the surface the ‘intrinsic’
angular momentum acquired by the electron through its interaction with the zpf. For this
purpose we recall the experimental observation that the interaction of the electron with the
radiation field takes place via the circular polarized modes of the field (or modes of a certain
helicity). This is known to be the case for the photonic field, which, from the perspective of
sed, is the excited state of the radiation field, additional to the zero-point component. Now, it
is natural to assume that the modes of the field in its ground state, i. e., of the zpf, interact in
a similar way with the electron. To analyze the effect of such interaction, we should therefore
consider the zpf as composed of modes of both right- and left-handed circular polarization.
When the ensemble of field modes is considered in its entirety, as is usually done, any such effect
is concealed; yet by focusing on one of the two subensembles of a given polarization, the effective
rotation induced on the corresponding particles should be disclosed.

Let us therefore consider a situation in which the particle is in a stationary state, under the
action of the background field of a given circular polarization with respect to an axis k. To start
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with, we shall consider the particle in its ground state, so as to ensure that there is no orbital
angular momentum. We therefore take

〈Lij〉0 = 〈0| (x̂ip̂j − x̂j p̂i) |0〉 (42)

and analyze separately the contributions arising from each of the two circular polarizations,
characterized by the (circularly polarized) vectors

εk± = 1√
2

(εki ± iεkj) , (43)

with εki, εkj unit Cartesian vectors orthogonal to the axis k.
Since according to the results reported in section 2.4, the response of the particle to the field

is linear, to describe its motion under the action of a circular field mode one should write the
variable x in cylindrical coordinates, i. e. x = x+εk+ + x−εk− + xkk̂, with

x± = 1√
2

(xi ∓ ixj) , (44a)

xi = 1√
2

(
x+ + x−

)
, xj = i 1√

2

(
x+ − x−

)
. (44b)

Taking into account that x±n0 =
(
x∓0n
)∗

, equation (42) becomes explicitly

〈Lij〉0 = m
∑
n

ωn0
(
x+0nx

−
n0 − x

−
0nx

+
n0

)
= m

∑
n

ωn0

(∣∣x+0n∣∣2 − ∣∣x−0n∣∣2) . (45)

In the ground state, 〈Lij〉0 = 0; hence the two sums on the right-hand side contribute with equal
magnitude and opposite sign to the k-component of the total angular momentum, as should be
the case for a nonpolarized vacuum. Taken separately, these contributions are

〈Lij〉+0 = m
∑
n

ωn0
∣∣x+0n∣∣2 , 〈Lij〉−0 = −m

∑
n

ωn0
∣∣x−0n∣∣2 . (46)

Since, on the other hand, the mean value of the commutator (34) gives the sum rule

m
∑
n

ωn0
∣∣x±0n∣∣2 =

~
2
, (47)

the size of each separate contribution to (45) is just ~/2. In order to distinguish these
contributions from the (orbital) component of the angular momentum we write 〈Sij〉± instead

of 〈Lij〉±0 ; thus 〈Lij〉0 = 〈Sij〉+ + 〈Sij〉− , with

〈Sij〉± = ±~
2
. (48)

Direct calculation of the square of the angular momentum, using (24), is more cumbersome.
As a simple expedient, let us carry out this calculation for the isotropic harmonic oscillator
in its ground state. The (radiationless) approximation ṗi = fi allows us to write in this case
m

...
x i = −ω2

0pi. Further, since L2 = x2p2 − (x · p)2, we have

pi
∂L2

∂pi
= 2L2,

∂2L2

∂pi∂pi
= 4x2,

∂2L2

∂xi∂pi
= 0.

With these results equation (24) transforms into

〈
L2
〉
0

=
mc3

e2ω2
0

〈
Dppx2

〉
0
, (49)
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with Dpp given by equation (11). Now in the case of the harmonic oscillator, using equations
(2), (4) and (19) we obtain a constant value for the diffusion coefficient,

Dpp =
~e2ω3

0

c3
, (50)

whence using 〈x2〉0 = 3〈x̂2〉0 = 3~/(2mω0), equation (49) becomes finally

〈
L2
〉
0

= m~ω0

〈
x2
〉
0

=
3

2
~2. (51)

This result was obtained for the first time by Marshall in 1965 [15], and taken as an additional
contribution to the orbital angular momentum due to the zpf. In [9] the same result was
obtained, but interpreted as an intrinsic (spin) angular momentum of double the correct value.
However, in line with the present approach, we separate again the full ensemble into two
subensembles corresponding to the different circular polarizations, thus obtaining〈

L2
〉
0

=
〈
L2
〉+
0

+
〈
L2
〉−
0
, (52)

with each partial contribution to the mean square angular momentum given by〈
L2
〉+
0

=
〈
L2
〉−
0

= 3
4~

2. (53)

Using the notation introduced above (see equation (48)), which identifies this as an intrinsic
angular momentum, we write 〈

S2
〉+

=
〈
S2
〉−

= 3
4~

2. (54)

The fact that this result does not depend on the oscillator’s frequency ω0, suggests that
it holds in the general case, and for the free particle in particular. Therefore, we conclude
that when the transformation (44) possesses physical meaning, so that the decompositions

〈Lij〉0 = 〈Lij〉+0 + 〈Lij〉−0 and
〈
L2
〉+
0

=
〈
L2
〉+
0

+
〈
L2
〉−
0

make sense, equations (48) and (54)
tell us that there exists an angular momentum that does not correspond to an orbital motion
of the particle and can therefore be considered as intrinsic. For an electron, which (as stated
above) interacts with the radiation field via its circular polarized modes, the transformation
(44) is indeed physically meaningful, and the angular momentum thus induced can therefore be
identified with its spin.

3.2. General derivation of the spin angular momentum
In the preceding section we have disclosed the existence of the spin angular momentum for an
electron in its ground state. Let us now extend our analysis to the general case, including excited
states with orbital angular momentum.

According to the above discussion, we should separate the contributions to the angular
momentum arising from the two circular polarizations of the field. Denoting with the index
n (or k) the set of quantum numbers that characterize a state of the particle, including the
orbital angular momentum and its projection along the z-axis, we have (for simplicity in the
writing we use xi = x, xj = y, and xk = z)〈

L̂z

〉
n

= 〈n| L̂z |n〉 =
∑

k
(xnkpykn − ynkpxkn) =

= im
∑

k
ωkn (xnkykn − ynkxkn) . (55)
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Under the same procedure that led to (45), equation (55) transforms into〈
L̂z

〉
n

= m
∑

k
ωkn

(∣∣x+nk∣∣2 − ∣∣x−nk∣∣2) . (56)

This expression can be rewritten as〈
L̂z

〉
n

= 〈Oz〉+n + 〈Oz〉−n , (57)

with 〈Oz〉σn given by (σ = ±)

〈Oz〉σn = σm
∑

k
ωkn |xσnk|

2 . (58)

Using again the sum rule m
∑

k ωkn |xnk|
2 = m

∑
k ωkn |ynk|

2 = 1
2~, one obtains from (58)

~ = m
∑

k
ωkn

(∣∣x+nk∣∣2 +
∣∣x−nk∣∣2) = 〈Oz〉+n − 〈Oz〉

−
n , (59)

which combined with (57) gives

〈Oz〉σn = 1
2

〈
L̂z

〉
n

+ σ 1
2~. (60)

This quantity 〈Oz〉σn contains, for every polarization state σ, both the corresponding part of the
orbital angular momentum, and the spin associated with that state.

To construct the operator associated with the vector S introduced in section 3.1, we observe
that the mean value 〈L̂z〉n does not depend on σ, whereas the term σ~/2 does not depend on

n. This indicates that the operator L̂z and the operator to be associated with σ~/2 (which we

shall call Σ̂z) belong to different Hilbert spaces. In order to express 〈Oz〉σn as the average of
an operator, we must therefore extend the Hilbert space to include the dichotomous variable σ
in addition to the quantum index n. The result is the product space H = Hn ⊗ H2, with H2

a bidimensional vector space spanned by an orthonormal basis having as elements the vectors
{|σ〉} = {|+〉 , |−〉} . In terms of |nσ〉 = |n〉 ⊗ |σ〉, equation (60) rewrites as

〈Oz〉σn = 1
2 〈nσ| L̂z |nσ〉+ 1

2~ 〈nσ| Σ̂z |nσ〉 , (61)

with Σ̂z an operator that has |σ〉 as eigenvector,

〈nσ| Σ̂z |nσ〉 = 〈σ| Σ̂z |σ〉 = σ. (62)

Expressing Σ̂z in terms of the Pauli matrices gives

Σ̂z = a0I + azσ̂z + a+σ̂+ + a−σ̂−, (63)

where a± = (ax ∓ iay) /
√

2, and σ̂+ =
√

2 |+〉 〈−| , σ̂− =
√

2 |−〉 〈+| are ladder operators.

Condition (62) imposed on Σ̂z gives a0 = 0, az = 1. Further, since we are here considering the
variables (x+, x−, z), the polarization vectors (43) fix ẑ as the preferred axis, whence a± = 0,
Σ̂z = σ̂z, and equation (61) becomes

〈Oz〉σn = 〈nσ|
(
1
2L̂+ Ŝ

)
· ẑ |nσ〉 , (64)

with Ŝ the vector operator defined as Ŝz = ~1
2 Σ̂z, i.e.,

Ŝ = 1
2~σ̂. (65)

EmQM13: Emergent Quantum Mechanics 2013 IOP Publishing
Journal of Physics: Conference Series 504 (2014) 012007 doi:10.1088/1742-6596/504/1/012007

10



The identification of the operator Ŝ with the spin of the electron is thus justified. The
independence of 〈L̂z〉n from σ and of 〈Σ̂z〉 from n, indicates that under the present conditions,
the fluctuations associated with the spin are not correlated with those that characterize the
kinematics of the particle in the configuration space: L and S constitute independent dynamical
variables. Of course the spaces of the spin and the orbital angular momentum may become
connected by the presence of magnetic fields.

It should be stressed that even if L̂ and Ŝ are combined under one expression for the angular
motions, e. g. equation (64), the spin is not an orbital angular momentum. Indeed, there

are fundamental differences between L̂ and Ŝ. In particular, the mean value of L̂z, say, can
be freely determined by adjusting external parameters, and may acquire a whole spectrum of
values. However, only the sign of the projection Ŝz can be subject to external adjustment; its
absolute value is determined by the fundamental commutator, which in its turn is fixed by the
zpf. It is because of the universal value of the commutator that the spin of the electron is the
same for all electrons under all circumstances, which reinforces its ‘intrinsic’ nature.

The connection of the commutator [x̂, p̂x] = i~ with the spin of the electron deserves a
further comment. As pointed out in previous sections, Planck’s constant ~ is a direct measure
of the size of the fluctuations, both those of the zpf and those impressed by it on the particle.
Specifically, since the commutator implies that the fluctuations of x and px have a minimum
value adjusted to the rule σ2xσ

2
px

∣∣
min

= ~2/4 (σ2x, σ
2
px are variances), one may write the numerical

relation
∣∣∣〈±| Ŝz |±〉∣∣∣ = ~/2 = σxσpx |min , which emphasizes the fact that the value of the electron

spin is determined by the irreducible fluctuations of the phase-space variables x, px around the
instantaneous position of the particle.

3.3. The spin gyromagnetic factor
It was discovered experimentally that the g-factor associated with the spin magnetic moment
of the electron has an approximate value gS = 2, whereas for the orbital magnetic moment the
g-factor is gL = 1. This characteristic value of gS is incorporated into nonrelativistic quantum
theory by hand, usually without further elaboration. The issue is normally resolved by resorting
to the Dirac equation, which predicts gS = 2. Given that the present theory produces the
electron spin, it seems appropriate to investigate the value predicted by it for gS . For this
purpose consider the electron acted on, in addition to the external force f(x), by a static
uniform magnetic field B = Bẑ. The contribution of the orbital angular momentum L to the
Hamiltonian is given by

Ĥ = −µ̂ ·B = −µzB, (66)

where µ̂ = −(gLµ0L̂)/~ is the magnetic moment due to L̂, µ0 = |e| ~/(2mc) is the Bohr
magneton (with −e = |e|), and gL = 1. Therefore the mean energy is

E =
µ0
~
B〈L̂z〉. (67)

Consider now a situation in which the spin projection along ẑ has a well-defined value, say
〈Ŝz〉 = +~/2. This means that one should consider only the subensemble that corresponds to

σ = +.Resorting to equation (60) to write the corresponding contribution to 〈Lz〉 as (〈L̂z〉+~)/2,
the component of E of interest is

E+ =
µ0B

~

(
1

2
〈L̂z〉+

~
2

)
=
µ0B

~

(
1

2
〈L̂z〉+ 〈Ŝz〉

)+

. (68)

An analogous result holds for the subensemble with σ = −, for which 〈Ŝz〉 = −~/2,

E− =
µ0B

~

(
1

2
〈L̂z〉 −

~
2

)
=
µ0B

~

(
1

2
〈L̂z〉+ 〈Ŝz〉

)−
. (69)
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The corresponding Hamiltonian describing the total magnetic interaction of the electron follows
from the sum of these contributions; it is therefore

ĤLS =
µ0B

~

(
L̂z + 2Ŝz

)
. (70)

This contains the correct g-factor of 2 for the spin of the electron, in the radiationless
approximation. It is clear from the derivation that this value is determined by the two degrees
of freedom associated with the polarization of the zpf.

Notice that the result (70) gives a precise meaning to the operator appearing in equation
(64). Indeed, from this latter equation we can write Ô = (L̂+ 2Ŝ)/2, whence

ĤLS =
µ0
~
B ·

(
L̂+ 2Ŝ

)
= −µ̂ ·B, (71)

with µ̂ = −2µ0
~ Ô, which directly relates Ô with the total magnetic-moment operator of the

atomic electron.

4. Final remarks
The present results give strong support to the representation of the electron spin as an acquired
angular momentum. They reaffirm the image, suggested in previous sed work, of spin as a
helicoidal motion around the local mean path followed by the particle, produced by the high-
frequency (circular polarized) modes of the fluctuating vacuum.

If, according to the results presented, a charged particle acquires spin 1/2, the question arises
as to whether a similar effect shouldn’t be expected to appear in the case of scalar bosons. A
possible answer to this question is that the spin 1/2 is acquired by elementary particles, such
as the electron, whereas composite particles may acquire it or not, depending on their internal
structure. This suggests that bosons are in general composite structures, with an even number
of elements (if of fermion type).
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