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Abstract. Nature’s laws in the domain where relativistic effects, gravitational effects and
quantum effects are all comparatively strong are far from understood. This domain is called the
Planck scale. Conceivably, a theory can be constructed where the quantum nature of phenomena
at such scales can be attributed to something fundamentally simpler. However, arguments that
quantum mechanics cannot be explained in terms of any classical theory using only classical
logic seem to be based on sound mathematical considerations: there can’t be physical laws that
require “conspiracy”. It may therefore be surprising that there are several explicit quantum
systems where these considerations apparently do not apply. In the lecture we will show several
such counterexamples. These are quantum models that do have a classical origin. The most
curious of these models is superstring theory. This theory is often portrayed as to underly the
quantum field theory of the subatomic particles, including the “Standard Model”. So now the
question is asked: how can this model feature “conspiracy”, and how bad is that? Is there
conspiracy in the vacuum fluctuations?

1. Introduction

When the foundations of quantum mechanics are investigated, this is often done from different
perspectives. What is agreed about is that the theory contains mysteries which somehow require
explanation, but then the question comes what ‘clarification’ of such mysteries might mean:

i One might assume that quantum mechanics as we experience it in today’s understanding of
the physical laws, is an approximation, an idealization, of some deeper underlying theory.
The underlying theory is not quantum mechanical, but obeys classical logic, which in
some approximation takes the shape of Schrödinger’s equation. It is difficult to imagine
a theory that is more basic than quantum mechanics, while it would only roughly mimic
pure quantum mechanics, but this is the only choice one has if one takes for granted that
theories with classical logic cannot reproduce quantum mechanics exactly.

ii Alternatively, one may accept quantum mechanics as it is, but desires to obtain a more
precise picture of how exactly quantum mechanics describes physical reality. What is
physical reality? Do we have an infinity of different universes that all can be called ‘real’,
as in the Many World Hypothesis? Or should the wave function be interpreted exactly
as in the Copenhagen interpretation, as a complex quantity that replaces the standard
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probability function W in classical statistical mechanics?

iii Search for an explanation as to how quantum mechanics can emerge as an exact statistical
description of an underlying theory, which, nevertheless, is suspected to exhibit classical
logical equations anyway. In this case, one must also provide an explanation of how this
can be reconciled with the usual arguments that such theories are impossible. Since these
arguments are usually considered to be impeccable, such approaches are rare, but what can
be done is this: let us simply try and investigate various candidate models that seem to
be exactly equivalent to quantum mechanical systems, but will usually suffer from some
defects. Then investigate these defects. Maybe we hit upon models that, even if they
are classical, must exhibit some unusual features as well. These will be worth-while to
investigate for their own sake.

This report is about progress made[1][2] in this last approach, number iii . It is clear that
theories along these lines, which are deterministic but also appear to obey locality, so that
they seem to be “local hidden variable theories”, must be quite different from what we are
used to. Quite probably, their elementary mass- and distance scales are in the Planck domain,
about which we have very little direct information. Regardless what kind of theories we will
try, there are all sorts of difficulties here: not only do we have the difficulties associated with
the unrenormalizable divergences, the black hole information paradox, and questions concerning
non-trivial topologies in space-time, but one must also not forget that the group of Lorentz
transformations is essentially non-compact, and this creates problems when we wish to consider
the possibility of a ‘smallest distance’ in space and/or time. This may explain why our progress
is slow, but we do wish to report progress anyway, and it is interesting.

To set the scene, we have a number of very illuminating ‘toy models’, which display very
well the promising nature of this approach. Three examples will be discussed here. All three
are integrable, which makes their discussion very transparent, and all three models share the
property that they are classical and quantum mechanical at the same time:

1 The quantum harmonic oscillator. It is mathematically equivalent to a classical point
particle moving around the unit circle at constant speed. More generally, we claim that
the quantum harmonic oscillator is represented by any periodic classical system.

2 The chiral Dirac fermion. It is mathematically equivalent to an infinite plane moving with
the speed of light in one of the two possible directions orthogonal to the plane.

3 The non-interacting sector of a fully quantized superstring, which is mathematically
equivalent to a classical string moving over a target space that is a lattice[4]. The lattice
spacing a obeys a = 2π

√
α ′ , where α′ is the string slope parameter.

The interactions of strings with themselves still lead to problems that have not been solved. In
the following sections we discuss these models. At the end, we discuss their potentials for the
general quantum discussion.

2. The harmonic oscillator

Consider the spectrum of the harmonic oscillator. Its energy eigen states |n〉E have energy
eigen values

En = (n+ 1
2)~ω . (2.1)

EmQM13: Emergent Quantum Mechanics 2013 IOP Publishing
Journal of Physics: Conference Series 504 (2014) 012003 doi:10.1088/1742-6596/504/1/012003

2



First, consider a high-energy cut-off: the spectrum has an upper limit: n < N . We now also
remove the vacuum energy 1

2~ω as being not very essential for the discussion that follows1.
Our Hilbert space is N -dimensional, so a basis has always N elements. Because of the equal
spacings in the energy levels, we have indeed periodicity with period T :

e−2πiH/~ω = 1 , T = 2π/ω . (2.2)

This suggests that we look at a new basis of states, labled with an integer k = 0, · · · , N − 1 ,
and defined by the finite Fourier transformation:

|k〉ont ≡
1√
N

N−1∑
n=0

e−2πi kn/N |n〉E , k = 0, · · ·N − 1 . (2.3)

This turns our system into a model with classical periodicity. At time steps that are integer
multiples of δt = 2πT/N , the system evolves by permuting these “ontological” states:

|0〉ont → |1〉ont → · · · → |N − 1〉ont → |0〉ont . (2.4)

This is as classical as a model can be. The quantum number k in Eq. (2.3) will be called beable,
in honor of J.S. Bell[3].

The continuum limit N →∞ can be taken, but requires some caution2. It is instructive to
compute the matrix elements of harmonic oscillator operators such as x̂ and p̂ in the ontological
basis. Since we know the explicit wave functions of the energy eigen states in the x and the
p basis, we can calculate these operators. For simplicity we put ω = 1 . The period is fixed,
T = 2π , while the fundamental time steps δt become infinitesimally short.

Let the continuum limit then be described by the ontological states

|ϕ〉 = 1√
N |k〉ont , ϕ = 2πk/N , (2.5)

where N is the norm that normalizes the |ϕ〉 states such that 〈ϕ|ϕ′ 〉 = δ(ϕ−ϕ′ ) . The matrix
transforming these to the x eigen states and back is found to be

〈ϕ|x〉 =

∞∑
n=0

Hn(x)e−
1
2x

2

2(n+1)/2π3/4
√
n!
einϕ (2.6)

where Hn(x) are the hermite polynomials.

At all fixed values of x and ϕ , the sum converges, but very slowly, because we need to
include all energy eigen states that contribute at a given x , until the energies are so high that
the bulk of the wave function stretches much further, away from x . Mathematically working
out the sum is laborious, and it does not lead to simple special functions because of the square
root. We did find powerful approximation methods, and arrived at functions that can be plotted,
see Figure 1. The most salient features of this matrix are visible here: the function oscillates
wildly, and eigen values of the operator x̂ jump from predominantly positive to predominantly
negative as ϕ passes the values ±1

2π .

1 The term 1
2
.~ω makes the system antiperiodic with period T . But here we consider a total shift of the energy

that removes the 1
2
~ω as a harmless procedure, so that the minus sign over an odd number of periods is ignored.

2 In the case of finite N , the x̂ operator connects the lowest energy state |0〉E to the highest energy state
|N − 1〉E ; one would be tempted to ignore this term in the limit N → ∞ , in which case unitarity will be
violated. The fact that there is a small subset of states where the mapping classical – quantum mechanical fails
may be an important feature to keep in mind; it happens in other examples as well.
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Figure 1. Plot of the real part of the transformation matrix 〈ϕ |x 〉 . Horizontally, x runs
from −10 to 10 , vertically, ϕ runs from −π to π . In the busiest parts of the picture, the
rapid oscillations are no longer visible.

The most important conclusion of this chapter is that the quantum harmonic oscillator is
closely related to completely classical periodic systems in Nature. In elementary particle physics,
we encounter many oscillating modes whose energy packets are the fundamental particles. We
now see that these may be linked to periodic structures in a classical underlying theory. Of
course this leaves the question of interactions wide open, but one may guess where one could
try to go from here: seek how interactions can be understood as violations of exact periodicity
in the behavior of oscillating modes in whatever the ‘hidden variable’ theory might contain.

3. Massless chiral fermions in three spacelike dimensions

In a massless fermion, even when coupled to a gauge field such as the Maxwell or the Yang-
Mills field, the helicity, defined as being the spin projected along the direction of motion, is a
conserved quantity. This implies that we can postulate that the particle is always left-handed,
or only right handed. In that case, the wave function is only a two-component spinor rather
than the usual four components.

Let us consider the non-interacting case. We call our particle a “neutrino”, between quotation
marks because it is the idealized version: no mass and no interaction. In the Majorana
representation, the single, first quantized “neutrino” is described by the Hamiltonian

H = ~σ · ~p , (3.1)
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where ~p is the momentum operator and ~σ are the Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (3.2)

Define

p̂ = ± p

|p|
, s = (p̂ · ~σ) , r = 1

2(p̂ · ~x+ ~x · p̂) . (3.3)

The sign here is arbitrary; it could be defined such that p̂3 ≥ 0 . The equations of motion for
these operators are derived as follows:

d

dt
~x = −i[~x, H] = ~σ ,

d

dt
~p = 0 , (3.4)

d

dt
σi = 2εijk pjσk ;

d

dt
p̂ = 0 ; (3.5)

d

dt
(p̂ · ~σ) = ±2εijk(pi/|p|)pjσk = 0 , (3.6)

d

dt
(p̂ · ~x) = p̂ · ~σ , (3.7)

so that we have

d

dt
p̂ = 0 ,

d

dt
s = 0 , and

d

dt
r = s = ±1 . (3.8)

Furthermore, we have

[p̂, s] = 0 , [p̂, r] = 0 , and [s, r] = 0 . (3.9)

The first of these is obvious, and the last follows from the second. The fact that [p̂, r] = 0
can be found by explicit calculation, but also understood as a consequence of the fact that, in
momentum space, r is the dilation operator divided by |p| , while p̂ is invariant under dilations
(its norm stays one).

Together, Eqs. (3.8) and (3.9) imply that p̂ , r and s form a set of beables[3], which are
operators that commute with one another at all times. The best way to describe these observables
physically is to say that they represent a sheet moving with the speed of light in one of the two
possible orthogonal directions, see Fig. 2.

This is why we claim that the ontological theory behind a ‘neutrino’ is an infinite sheet
moving with velocity v = c in one of its two possible orthogonal directions. If interactions or
masses would be introduced, we have no obvious ontological theory anymore; one would have
to search for the theory replacing the sheet in that case.

The mathematics of the transformation relating infinite sheets to neutrino states is delicate
and interesting. The Hilbert space of ‘neutrinos’ can be assumed to be spanned by the states
|~p, α〉neutrino or the states |~x, α〉neutrino , where α = ±1 is the spin variable, or, the eigenvalue
of the Pauli spin operator σz . The sheet states will be denoted as |p̂, r, s〉sheet . By first Fourier
transforming the r variable to get the states |p̂, pr, s〉sheet , the orthogonal matrix relating these
two sets of states can be calculated to be

neutrino〈~p, α | p̂, pr, s〉sheet = pr δ
3(~p− p̂ pr)χsα(p̂) , (3.10)

neutrino〈 ~x, α | p̂, r, s 〉sheet =
i

2π
δ ′(r − p̂ · ~x )χsα(p̂) , (3.11)
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Figure 2. The “neutrino” as an infinite sheet. p̂ is a unit vector, and therefore is a point of a
unit sphere (actually half of a sphere, since its sign can be kept free). It defines the orientation
of a sheet. The original coordinate variable ~x sits in this sheet. r is the distance of the sheet
to the origin. The vectors ~θ and ~ϕ are used in the text.

where χsα(p̂) is the spin eigen state of the operator s with eigen value s , in the basis of σz .
Furthermore, δ′(z) ≡ (∂/∂z)δ(z) . The derivative stems from the factor pr , which is necessary
for a proper normalization of the sheet states.

To express the neutrino operators ~x and ~p in terms of sheet operators is not quite so easy.
The phases of the sheet states still have to be defined. To do that right, we need an orthonormal
set of two unit vectors ~θ and ~ϕ on the sheet. They could be defined as in Figure 2. We then
define the rotation operators Lont

i for the sheet as the generators that rotate the sheet. Lont
i

do nothing but rotate the unit vectors p̂ .

We have

pr = ±|p| , ~p neutrino = p̂ pr , (3.12)

but finding an operator ~x with the proper commutation rules with ~p is tedious. We first have
to define spin flip operators s1 and s2 , obeying, just like the Pauli matrices:

s3 = s , sisj = δij + iεijksk . (3.13)

We found (no derivation is given here)[1]:

xneutrinoi = p̂i (r − i

pr
) + εijk p̂j L

ont
k /pr +

1

2pr

(
−ϕi s 1 + θi s 2 +

p̂ 3√
1− p̂23

ϕi s 3

)
. (3.14)
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Thus we arrive at a picture where ‘neutrinos’ are identified with flat sheets spanning to infinity,
able to move with light speed in one of the two directions in a line orthogonal to the sheet,
in a totally classical way. This indicates the potential of our theory but also the difficulties.
The potential is that systems normally considered as purely quantum mechanical may yet be
completely classical, in disguise. One might object that these sheets may transfer signals with
infinite speed inside a sheet, so that indeed the model might be considered non-local in a sense.
Perhaps this is the kind of non-locality that will be inevitable in “hidden variable” theories.

The difficulty clearly shows up when one wishes to consider mass terms and/or interactions.
What can happen if two sheets interact at a point? Most likely one first has to second-quantize
the system: have many neutrinos described by many sheets. But even then it is difficult to
see how things can interact; a sheet cannot easily be made to change its direction of motion
at one point by means of local interactions. One will have to consider the possibility of having
imperfect sheets, but more likely models will be found that are more profoundly different.

4. Real numbers and integers

Imagine that, in contrast to appearances, the real world, at its most fundamental level, were
not based on real numbers at all. Real numbers are a man-made invention in response to
the apparent continuous nature of our world, such as the positions and sizes of things. Our
impression of everything being continuous received its first blow when it became quite evident
that matter is made by atoms, which are discrete. Subsequently, it was found that energy is
quantized. Now the energy quantum is controlled by the frequency of a wave function, and
since time still seems to be continuous as far as we know, frequencies can be varied continuously,
and in spite of our discovery of quantum mechanics, we still use real numbers in most of our
calculations.

On the other hand, however, there are indications that, eventually, real numbers might get
to be gradually replaced as our understanding of space and time further improves. A curious
indication that this might happen is the theory of the information content of black holes. The
microscopic regions near the horizon of a black hole seem to harbor only discrete amounts of
information, in the form of black hole microstates. Information is fundamentally discrete. It
is generally believed that space and time cannot be represented as a continuum of real-valued
coordinates at distance scales as tiny as the Planck scale.

This is a motivation for searching for procedures to replace real numbers by integers. As
it turns out, standard mathematics used in quantum mechanics provides us with the tools to
do this. Again we use mappings, where one basis of Hilbert space is replaced by another.
Surprisingly, what we shall derive is the following:

There is a natural way to map a Hilbert space where the basis elements are
characterized by a set of two integers, which we shall call P and Q , onto a set of
states where the basis elements are characterized by one real number.[5]

The mapping is one-to-one, with only one single state escaping at one side: it generates a
singularity. The mapping can be trivially extended to the mapping of 2N integers, Pi and
Qi , i = 1, 2, · · · , N , onto basis elements of either N real numbers qi, i = 1, 2, · · · , N or N
real numbers pi . The construction is such that pi and qi can be handled as positions and
momenta in accordance with canonical theories of mechanics. Because [qi, pj ] = i~ δij , the |~p 〉
states and the |~q 〉 states are not independent.

The integers, which we shall always write as capitals Qi and Pi , completely commute. For
this reason, it will be relatively easy to formulate deterministic theories based on Qi and Pi ,
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since these can be the beables of our system.

The mapping is easy to formulate. Consider first just one set of states |Q〉 , where Q is an
integer. It may run from −∞ to ∞ . We can then introduce the unitary step operator U by

U |Q〉 = |Q+ 1〉 . (4.1)

Since U is unitary, and is easily seen to be non-degenerate, we can write it as

U = εiη , ε ≡ e2π ≈ 535.5 ; εNiη|Q〉 = |Q+N〉 , (4.2)

for any N , where −1
2 < η ≤ 1

2 . The quantity η is an operator, and its relation to the Q
operator is easy to derive:
Consider the function η in the domain −1

2 < η < 1
2 . It is easy to Fourier transform this

function,

η =
∞∑

N=−∞
aN ε

iNη , aN =

∫ 1
2

−1
2

η dη ε−iNη =
i(−1)N

2πN
if N 6= 0 , (4.3)

and a0 = 0 . Therefore, we can write

η =
∑
N 6=0

i(−1)N

2πN
εiNη , (4.4)

so that

〈Q1|η|Q2〉 =
i

2π
(1− δQ1,Q2)

(−1)Q1−Q2

Q1 −Q2
. (4.5)

It follows that

[η,Q] =
i

2π
(I− |ψ0〉〈ψ0|) , with 〈Q|ψ0〉 ≡ (−1)Q . (4.6)

Here the single state |ψ0〉 describes the one state for which the commutator is not the canonical
one. We shall encounter such states more often; it is the exceptional state alluded to earlier, to
be referred to as the edge state. We observe that this is also the state for which the operator η
has the value ±1

2 , exactly the edge of the Fourier domain in Eq. (4.3).

The mapping that we wish to use is the mapping from the Q basis to the η basis and back.
Just because we prefer to put η on an open interval rather than a closed circle, we encounter
the ‘problem’ of the edge state; it will have to be taken proper care of. The transformation
matrix is simply εiQη . Because of our special choice of ε as the base of our exponentials, the
normalization of the matrix became trivial.

Now, consider a real number q . Let us write

q = Q+ ηP , (4.7)

where Q is integer and ηP lies between 0 and 1 (as much as possible, we intend to write real
numbers as lower case letters, integers as capitals, and numbers modulo 1, or fractional numbers
between 0 and 1, as Greek letters). Since this splitting is unique, we can write basis elements
|q〉 as

|q〉 = |Q, ηP 〉 . (4.8)
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Next, we can Fourier transform

|ηP 〉 =
∞∑

P=−∞
εiP ηP |P 〉 , (4.9)

where P is integer. Any state |ψ〉 can thus be written in the real q basis or in the Q, P basis:

〈q|ψ〉 = 〈Q, ηP |ψ〉 =
∑
P

ε−iP ηP 〈Q, P |ψ〉 . (4.10)

This is what we mean when we state that quantum mechanics on a basis described by a real
number q can be transformed to quantum mechanics with a basis of a pair of integers, Q and
P .

Subsequently, one may transform to momentum space, using the matrix

〈q|p〉 = εipq . (4.11)

Notice however, that this procedure is not quite symmetric under the interchange Q ↔
P , q ↔ p , but this symmetry can be restored. At the same time, one can reduce the effects
of edge states. This we do by multiplying the coefficients of a wave function |ψ〉 in the space
of the pairs ηQ, ηP , by a complex phase, εiϕ(ηQ, ηP ) . This phase can be chosen such that the
coefficients become exactly periodic both in ηP and in ηQ . This would remove the edge state
completely, except for the fact that the phase function εiϕ will feature a vortex singularity. This
means that, at the very location of this vortex, we still will have an edge state.

The result of this procedure, requiring a calculation that will be published elsewhere[5], is
that we obtain a transformation from the basis 〈q| or 〈p| to a basis of states 〈Q,P | that, apart
from a few signs, is entirely symmetric. We write for the q and p operators

q = Q+ aQ , p = P + aP , (4.12)

where the operators aQ and aP are not exactly restricted to the interval (−1
2 ,

1
2) , but they

will stay of order one:

〈Q1, P1|aQ|Q2, P2〉 =
(−1)P+Q+1 iP

2π(P 2 +Q2)
,

〈Q1, P1|aP |Q2, P2〉 =
(−1)P+Q iQ

2π(P 2 +Q2)
. (4.13)

From these, one derives that

[q, p] =
i

2π
(1− |ψedge〉〈ψedge|) , with 〈Q,P |ψedge〉 = (−1)Q+P . (4.14)

In (ηQ, ηP ) space, the edge state |ψedge〉 is the delta peak on the spot (ηQ, ηP ) = (±1
2 , ±

1
2) ,

exactly where we located the vortex of our phase function ϕ(ηQ, ηP ) . The eigen values of both
operators q and p in Eq. (4.12) occupy the entire real line without overlappings, but we do
have to restrict ourselves to the states that are orthogonal to the edge state |ψedge〉 .
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5. Free massless bosons in 1+1 dimensions

The field operators in a quantized field theory also have their eigenvalues on the real line. We
would like to apply the results of the previous chapter to such theories, but in general this
would not produce viable deterministic models. The reason is, that the splitting (4.12) does not
transform in a simple way when two real numbers are added or subtracted.

However, the (Q,P ) ↔ (q̂, p̂) mapping can nevertheless be significant for field theories, if
we can arrange the dynamical variables in such a way that the classical field equations involve
displacements without additions or subtractions.

The rest of this chapter was written down earlier in Ref.[2]. Take a free, massless quantum
field theory in 1+1 dimensions, having field variables φ(x, t) and a canonical momentum field
p(x, t) obeying commutation rules

[φ(x, t), p(x′, t)] =
i

2π
δ(x− x′) , [φ(x, t), φ(x′, t)] = [p(x, t), p(x′, t)] = 0 . (5.1)

The Klein-Gordon equation,

(∂x + ∂t)(∂x − ∂t)φ(x, t) = 0 , (5.2)

implies the existence of left-movers φL(x+ t) and right-movers φR(x− t) :

φ(x, t) = φL(x+ t) + φR(x− t) , p(x, t) = 1
2a

L(x+ t) + 1
2a

R(x− t) , (5.3)

aL(x+ t) = p(x, t) + ∂xφ(x, t) , aR(x− t) = p(x, t)− ∂xφ(x, t) . (5.4)

In fact, up to some coefficients, these are Fourier transforms of the familiar particle creation and
annihilation operators. We have the hamiltonian density

H = 1
2(p2 + (∂xφ)2) = 1

4(aL
2

+ aR
2
) . (5.5)

In terms of the left- and right-movers, the commutation rules are

[aL, aR] = 0 , [aL(x), aL(y)] =
i

π
∂xδ(x− y) , [aR(x), aR(y)] =

−i
π
∂xδ(x− y) . (5.6)

Replacing the spacetime continuum by a (dense) lattice, one sees that these commutation rules
can be replaced by

[φ(x, t), p(y, t)] =
i

2π
δx,y , [aL(x), aL(y) = −[aR(x), aR(y)] = ± i

2π
if y = x± 1 . (5.7)

Now, suppose we introduce integer valued operators AL,R(x) and their associated momentum
operators ηL,R(x) , obeying

[ηL(x), AL(y)] = [ηR(x), AR(y)] =
i

2π
δx,y , [AL, AR] = [AL, ηR] = 0 , etc. (5.8)

(ignoring the usual edge states), one finds that we can write

aL(x) = AL(x) + ηL(x+ 1) , aR(x) = AR(x) + ηR(x− 1) , (5.9)

so that the commutation rule (5.7) is automatically obeyed.

EmQM13: Emergent Quantum Mechanics 2013 IOP Publishing
Journal of Physics: Conference Series 504 (2014) 012003 doi:10.1088/1742-6596/504/1/012003

10



With some more advanced mathematics, one can reduce the effects of the edge states to a
minimum (they cannot be ignored completely), as was briefly explained in the previous section.

The importance of this procedure, and the reason why it only works in one space, one
time dimension, is that the time evolution of the aL,R fields involves nothing more than shifts
in x space, without further linear transformations such as additions or subtractions. Linear
transformations in the variables AL,R and ηL,R do not lead to similar operators where the A
are integer and the η stay in the interval (12 ,

1
2 ] .

We now observe that, in string theory, the φ fields are the left- and right moving coordinates
Xµ in a D dimensional space-time. For convenience, we had chosen the world sheet lattice to
have lattice length a = 1 , but it is easy to verify that, if we had chosen any other lattice length,
the relation between the quantized variables A(x) and the space-time coordinates Xµ(x) would
remain the same. In other words, just because we wished to relate the commutation rules (5.1)
and (5.6) to the commutation rules (5.8), and have the relations (5.9) such that the real numbers
are smoothly covered, we find that the classical system has its spacetime coordinates Xµ defined
on a grid, and the grid length is fixed. Re-inserting the usual string units, one finds a space-time
lattice with lattice length[4]

aspacetime = 2π
√
α′ , (5.10)

a remarkable result. Note, that the classical theory has its string equations simply formulated in
terms of the integer valued operators AL,R(x, t) (where x and t are the world sheet variables
usually denoted as σ and τ . From the field equations (5.2) – (5.4), one derives that the
integer-valued string coordinates obey simple classical equations,

Xµ(σ, τ + a) +Xµ(σ, τ − a) = Xµ(σ + a, τ) +Xµ(σ − a, τ) . (5.11)

These equations must be assumed to describe the transverse string coordinates only. The
longitudinal and timelike coordinates have to be derived from the usual string constraint
equations. This part of the quantum theory remains unaffected. It means that, only in 26
dimensions, or in 10 dimensions if we add the fermionic degrees of freedom (see the next section),
the quantum theory has an enhanced symmetry: Lorentz invariance.

Curiously, Lorentz invariance here is a quantum symmetry, which means that its
transformations act non-trivially in the quantum q, p Hilbert space; it is not conspicuously
present in the classical Q, P variables.

The quantized superstring contains fermionic degrees of freedom in addition to the bosonic
coordinates. Remarkably, these fermionic modes can also be rephrased in classical terms:
Fermions are boolean variables (variables taking only two values, such as ±1 ), existing on
the fundamental links of the string. The independent fermionic modes are again the ones in the
transverse direction; the longitudinal fermionic modes are constrained by (quantum) equations.

The constraint equations that are needed to guarantee Lorentz invariance have no effect
on the bulk behavior of the (super)string, but do appear to cause problems when we consider
string interactions. Deterministic interactions can be considered, but it is not obvious that
these coincide with the standard quantum interactions of the usual quantum string. This may
turn out to be a serious limitation of the present considerations, but even if we would have our
mappings only for the non-interacting strings, we found it quite worth-while to report this.

6. Bell inequalities and other fundamental quantum features

Not much of this chapter is new, but it had to be added to clarify the author’s position
concerning J.S. Bells’s important observation[6]: local classical theories cannot reproduce the
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Figure 3. Space-time diagram for a Bell-type experiment, see text.

correlations generated in entangled particles that may typically arise in a quantum experiment.
Schematically, we imagine that at t = t1 (see Fig. 3), two entangled particles α and β are
produced; think of photons whose spins add up to zero. At t = t3 , two widely separated
observers, Alice and Bob, check whether their photon passes through a filter. The polarization
angles of the filters are given by the normalized vectors ~a and ~b , or angles a and b . Alice and
Bob each have the freedom to choose their angles.

Using quantum mechanics, we can calculate under all circumstances how Alice’s and Bob’s
measurements are correlated. According to Bell, these correlations can never arise from classical
signals travelling with the photons; a direct, “spooky” signal has to be assumed to be transmitted
between Alice and Bob after they chose the orientations of their filters. Alice and Bob chose
their orientation angles both by free will; there was no way these angles could have been known
prior to t = t3 .

At first sight, this argument can easily be countered when deterministic theories are
considered: Alice and Bob do not have such a free will; their decisions were already decided
at the very beginning of the Universe.

But this is not good enough. Suppose that Alice and Bob both base their decisions on
measurements of fluctuations in signals coming from distant sources a and b , We may imagine
that these are distant quasars that emitted their photons at t = t0 , shortly after the Big Bang.
One should be allowed to assume that these signals are uncorrelated. In that case also, the
outcome of the experiment then cannot be explained by classical arguments.

The correlations that emerge in simple quantum mechanical descriptions of entangled photons
will require correlations in the quasars a and b as well. A simple calculation yields the required
correlations as follows. The probability distribution W between the angle a imposed by Alice
in her experiment, the angle b that Bob decided upon, and the angle c that one might assume
to be carried by both entangled photons (in a classical effective description), is then required to
be at least of the form

W (~a, ~b, ~c) ∝ | sin(2a+ 2b− 4c)| . (6.1)
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Notice that, if we randomize either a , or b or c , the two remaining quantities become
uncorrelated, so if we drop our information of the photons c , then Alice and Bob need no
exchange of signals. The problem is that in a classical theory, one would have expected a
classical observable c , not correlated to a or b at all.

Eq. (6.1) describes what is usually called “conspiracy”[7]. The photons should not “know”
what Alice and Bob are going to do. One could imagine exceedingly complex devices that
randomize the signals a and b on their way from the quasars a and b to the filters I and II
used by Alice and Bob. It does not make sense if the photons could anticipate the outcome of
these calculations.

On the other hand there may be reasons to demand caution. Relativistic quantum field theory
does explicitly lead one to observe the existence of vacuum fluctuations. These are fluctuations
that fields undergo in the lowest energy state, the vacuum. Not only do vacuum fluctuations
show correlations between data that are spacelike separated (the propagators of the fields do not
vanish outside the light cone), but they also have the property that all scattering amplitudes,
and therefore also the future behavior, can be obtained from these correlation functions, simply
by analytic continuation. In this sense, there is conspiracy, while this is a kind of conspiracy
that never worried anyone.

We must conclude that statistical arguments may be invalid in deterministic theories. Also,
counterfactual arguments are not acceptable. In fact, Bell’s gedanken experiment was useful to
set the scene, but the problem in question already arises for single, unentangled photons. As
soon as an observer decides to choose the polarisation angle of a filter with the aim of measuring
photons, the wave functions of these photons are diagonalized according to the coordinate frame
generated by the filter, and extrapolating to the distant past, the photon always was in an
ontological state defined by the filter that lies in its future. This conceptual difficulty will have
to be accepted or ignored in all deterministic theories. What counts is that we have models that
seem to exhibit such behavior. Yet at the classical level there is no trace of any conspiracy.

As an intermezzo, consider an example from number theory. Consider an “arbitrary” large
prime number P . Consider an even large number Q defined by

Q = 2P−1 − 1 . (6.2)

What is the expected distribution of the number

P1 = Q modulo P ? (6.3)

One might have expected a flat distribution, but in fact, P1 is always zero, a simple result
from number theory. This illustrates our statement that statistical arguments in deterministic
systems should not be trusted.

Let us emphasize that the peculiarity found by Bell in his considerations for entangled
particles indeed leads to “conspirational” correlations in the classical theories we describe.
We suspect that statistical arguments, and also counterfactual arguments[8] are illegal for our
classical models, but how to explain this apparent ‘conspiracy’?

A state considered in some experimental setup may either be a physical state, which we shall
call ‘ontological’, or it is a superposition of ontological states. In our analysis of the experiment,
such states are indistinguishable. However, if an ‘ontological basis’ exists, which we believe to
be the case, then there is a conservation law : the ontological nature of a state is conserved in
time. If, at some late time, a photon is observed to be in a given polarization state, just because
it passed through a filter, then that is its ontological state, and the photon has been in that
ontological state from the moment it was emitted by its source. It seems to be inevitable to
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demand that the ‘ontological basis’ is unobservable, that is, indistinguishable from other bases,
as it is for instance in our description of string theory. ‘Conspiracy’ is then unobservable.

Let us also stress the importance of another observation: in quantum field theory, locality
means that the Hamiltonian can be written as the integral over space of a Hamiltonian density.
The Hamiltonian density is the generator of local time translations, and hence it is part of
the algebra of general coordinate transformations. This may mean that general relativity will
be an essential ingredient of a complete quantum theory; without general relativity, locality of
quantum mechanics may be difficult to understand. Indeed, the same conclusion can be reached
by considering the black hole microstates, which quite possibly correspond to the ultimate,
classical degrees of freedom of an underlying theory, while they fundamentally arise at the
Planck scale only. The problem of “quantizing” curved space-time, quantum gravity for short,
is notoriously complex and far from understood. It may well be that a complete understanding
of the quantum nature of our world will have to come together with the complete resolution of
the quantum gravity problem.
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