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Abstract. The e�ects of lack of local thermal equilibrium between the solid phase and the
�uid phase are taken into account for the convective stability analysis of a horizontal porous
layer. The layer is bounded by a pair of plane parallel walls which are impermeable and such
that the lower wall is subject to a uniform �ux heating, while the upper wall is isothermal.
The local thermal non-equilibrium is modelled through a two-temperature formulation of the
energy exchange between the phases, resulting in a pair of local energy balance equations: one
for each phase. Small-amplitude disturbances of the basic rest state are envisaged to test the
stability. Then, the standard normal mode procedure is adopted to detect the onset conditions
of convective rolls. Beyond the Darcy-Rayleigh number, playing the role of order parameter
for the transition to instability, the relevant dimensionless parameters are the inter-phase heat
transfer parameter and the thermal conductivity ratio. The disturbance governing equations,
formulated as an eigenvalue problem, are solved numerically by a shooting method. Results are
reported for the neutral stability curves and for the critical values for the onset of instability.

1. Introduction

The onset of thermoconvective instability in a horizontal �uid-saturated porous layer heated from
below has been extensively studied in the last decades. The attention deserved by this subject
is due to the many applications of this interdisciplinary research �eld, ranging from geophysical
research to biophysical applications as well as to petroleum and heat transfer engineering. A
detailed discussion of the literature on this subject can be found in the books by Nield and
Bejan [1], and by Straughan [2], as well as in the reviews by Tyvand [3], Rees [4], and Barletta [5].
Cornerstone studies of the onset of thermoconvective instability in porous layers are reported
by Horton and Rogers [6] and Lapwood [7]. They presented the �rst linear stability analysis
of what is now well-known as either the Horton-Rogers-Lapwood problem, or the Darcy-Bènard
problem. The Darcy-Bènard problem is closely linked to the classical Rayleigh-Bènard problem
for clear �uids. It consists of a basic motionless state with a uniform temperature drop across a
porous layer with a heated isothermal lower wall and a cooled isothermal upper wall.

A variant of the Darcy-Bènard problem will be investigated in this paper. Darcy's law for
momentum transfer in the porous medium is assumed to be valid, and a two-temperature model,
a temperature for the �uid phase and a temperature for the solid phase, is employed. Our
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Figure 1. Sketch of the porous layer.

aim is to analyse the e�ect of the local thermal non-equilibrium model on the onset of the
thermoconvective instability. An inter-phase heat transfer coe�cient is de�ned and the local
energy balance equations, one for the �uid phase and one for the solid phase, contain heat
exchange terms proportional to the local temperature di�erence between the two phases [1, 8, 9].

We aim to extend two previous analyses [10, 11] of the Darcy-Bènard problem with local
thermal non-equilibrium. Banu and Rees [10] considered a porous layer bounded by impermeable
isothermal walls, while Barletta and Rees [11] studied the case where both the boundary walls
are impermeable and iso�ux.

In our paper we will assume, in analogy with [10, 11], that the boundary walls are
impermeable. On the other hand, unlike in the studies reported in [10, 11], we will analyse
asymmetric temperature conditions, where the upper wall is kept at constant temperature,
while a uniform heat �ux is prescribed on the lower wall. The uniform heat �ux condition
will be formulated according to the Amiri-Vafai-Kuzay Model A [11, 12, 13]. The latter model
is valid when the boundary wall has a �nite thickness and a high thermal conductivity. A linear
stability analysis of the motionless basic state, where the �uid is thermally strati�ed in the
vertical direction, is performed. The normal mode method is employed to investigate the onset
conditions of the thermoconvective instability. A one-dimensional eigenvalue problem is thus
obtained. The analysis is focused on determining the neutral stability curves and the critical
values of the Darcy-Rayleigh number. Results are obtained numerically and are compared with
those valid for the limiting case of local thermal equilibrium between the phases.

2. Mathematical model

We consider a plane porous layer bounded by impermeable boundaries at z∗ = 0 and z∗ = L.
A uniform upward heat �ux, qw, is prescribed at z∗ = 0 and a uniform temperature, T0, is
prescribed at z∗ = L, see Figure 1. The porous medium is homogeneous and isotropic. Darcy's
law and the Oberbeck-Boussinesq approximation can be employed. The viscous dissipation e�ect
is negligible and no internal heat source exists. The local thermal non-equilibrium between the
solid and �uid phases is modeled through an inter-phase heat transfer coe�cient h.

2.1. Governing equations

The local thermal non-equilibrium model prescribes an energy balance equation for each phase:
one for the solid phase, and the other for the �uid phase. The set of dimensional governing
equations is given by a local mass balance equation, a local momentum balance equation and

31st UIT (Italian Union of Thermo-fluid-dynamics) Heat Transfer Conference 2013 IOP Publishing
Journal of Physics: Conference Series 501 (2014) 012004 doi:10.1088/1742-6596/501/1/012004

2



two local energy balance equations, namely

∇∗ · v∗ = 0, (1a)
µ

K
∇∗× v∗ = ρfg β∇∗×

[
(T ∗f − T0) ez

]
, (1b)

(1− ϕ)
∂T ∗s
∂t∗

= (1− ϕ)αs∇∗2T ∗s +
h

(ρc)s

(
T ∗f − T ∗s

)
, (1c)

ϕ
∂T ∗f
∂t∗

+ v∗ · ∇∗ T ∗f = ϕαf∇∗2T ∗f −
h

(ρc)f

(
T ∗f − T ∗s

)
, (1d)

where the subscripts f, s denote the �uid and solid phase, respectively, while the asterisks
denote dimensional variables and operators. We denoted as v∗ the velocity �eld with Cartesian
components (u∗, v∗, w∗), while T ∗f,s are the �uid and solid phase temperatures. Moreover, αf,s are

the thermal di�usivities of the two phases, viz. αf,s = kf,s/(ρc)f,s, t
∗ is time, µ is the dynamic

viscosity, K is permeability, ρ is density, g is the modulus of the gravitational acceleration g,
β is the thermal expansion coe�cient, T0 is the reference temperature, ez is the unit vector for
the direction z, ϕ is porosity, and c is the heat capacity per unit mass. The set of boundary
conditions can be expressed as [11, 12, 13]

z∗ = 0 : −ϕkf
∂T ∗f
∂z∗
− (1− ϕ)ks

∂T ∗s
∂z∗

= qw, T ∗f = T ∗s , w∗ = 0,

z∗ = L : T ∗f = T ∗s = T0, w∗ = 0. (2)

A dimensionless formulation of equations (1) and (2) is now introduced by the rescaling

x∗ = xL, t∗ = t
L2

αf
, v∗ = v

αf

L
= (u, v, w)

αf

L
, T ∗s,f = T0 + Ts,f ∆T. (3)

Here, km = (1 − ϕ) ks + ϕkf is the average thermal conductivity, and ∆T = qwL/km is the
reference temperature di�erence. The dimensionless set of governing equations can now be
written as

∇ · v = 0, (4a)

∇× v = ϕ
1 + γ

γ
R∇× (Tf ez) , (4b)

λ
∂Ts
∂t

= ∇2Ts +Hγ (Tf − Ts) , (4c)

∂Tf
∂t

+
1

ϕ
v · ∇Tf = ∇2Tf −H (Tf − Ts) , (4d)

where the Darcy-Rayleigh number R and the other dimensionless parameters employed in
equations (4) are de�ned as

λ =
αf

αs
, H =

hL2

ϕkf
, γ =

ϕkf
(1− ϕ)ks

, R =
g β∆TKL

αmν
, (5)

with αm = km/(ρc)f . On the other hand, the dimensionless boundary conditions are given by

z = 0 : − γ
∂Tf
∂z
− ∂Ts

∂z
= 1 + γ, Tf = Ts, w = 0,

z = 1 : Tf = Ts = 0, w = 0. (6)
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3. The basic state and its stability

A stationary basic state with vanishing velocity �eld is allowed as a solution of equations (4) and
(6),

vB = 0, Ts,B = Tf,B = 1− z, (7)

where B stands for basic state. One may note, on account of equation (7), that the temperatures
of the �uid phase and of the solid phase are exactly the same and thus, for the basic state, local
thermal equilibrium between the two phases occurs.

We now introduce small amplitude disturbances of the basic state de�ned by (7), such that

v = vB + ε Ṽ, Ts = Ts,B + ε Φ̃, Tf = Tf,B + ε Θ̃. (8)

Here, ε is a perturbation parameter, small enough as to neglect the nonlinear terms O(ε2),
while the perturbation velocity Ṽ has Cartesian components (Ũ , Ṽ , W̃ ), Φ̃ is the perturbation
temperature of the solid phase and Θ̃ is the perturbation temperature of the �uid phase. A
linear system of equations governing the disturbances is obtained by substituting equations (7)
and (8) into (4), namely

∇ · Ṽ = 0, (9a)

∇× Ṽ = ϕ
1 + γ

γ
R∇×

(
Θ̃ ez

)
, (9b)

λ
∂Φ̃

∂t
= ∇2Φ̃ +Hγ

(
Θ̃− Φ̃

)
, (9c)

∂Θ̃

∂t
− 1

ϕ
W̃ = ∇2Θ̃−H

(
Θ̃− Φ̃

)
. (9d)

Since the basic state, equation (7), is invariant by rotations around the z-axis, a two-dimensional
formulation of the problem, based on the coordinates (x, z), is allowed without any loss of
generality. Thus, a streamfunction can be de�ned

Ũ = ϕ
∂Ψ̃

∂z
, W̃ = −ϕ ∂Ψ̃

∂x
. (10)

The governing equations (9), on account of (10), are rewritten as

∇2Ψ̃ +
1 + γ

γ
R
∂Θ̃

∂x
= 0, (11a)

λ
∂Φ̃

∂t
= ∇2Φ̃ +Hγ

(
Θ̃− Φ̃

)
, (11b)

∂Θ̃

∂t
+
∂Ψ̃

∂x
= ∇2Θ̃−H

(
Θ̃− Φ̃

)
. (11c)

From equations (6)-(8), the boundary conditions associated with (11) are

z = 0 : γ
∂Θ̃

∂z
+
∂Φ̃

∂z
= 0, Φ̃ = Θ̃, Ψ̃ = 0,

z = 1 : Φ̃ = Θ̃ = 0, Ψ̃ = 0. (12)

The normal mode method is here employed. The disturbances are expressed in terms of plane
waves, namely 

Ψ̃(x, z, t)

Φ̃(x, z, t)

Θ̃(x, z, t)

 =

 iΨ(z)
Φ(z)
Θ(z)

 ei(ax−ωt). (13)
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Functions Ψ(z), Φ(z) and Θ(z) express the amplitude of the normal modes, a is the real-valued
wave number, while ω is a complex parameter such that its real part represents the angular
frequency of the wave. A positive imaginary part of ω means a perturbation exponentially
growing in time and, hence, an unstable behaviour. A negative imaginary part of ω yields an
exponential damping of the perturbation, corresponding to linear stability. Hereafter, we will be
interested in the stability/instability threshold, viz. in the neutral stability. At neutral stability,
the parameter ω is real-valued. Moreover, the principle of exchange of stabilities implies that
the neutrally stable modes are non-travelling, i.e. that ω is zero. Therefore, on account of (13),
equations (11) and (12) yield a system of real ordinary di�erential equations, namely

Ψ′′ − a2Ψ + a
1 + γ

γ
RΘ = 0, (14a)

Φ′′ − a2Φ +Hγ (Θ− Φ) = 0, (14b)

Θ′′ − a2Θ−H (Θ− Φ) + aΨ = 0, (14c)

with the boundary conditions

γΘ′(0) + Φ′(0) = 0, Φ(0) = Θ(0), Ψ(0) = 0,

Φ(1) = Θ(1) = 0, Ψ(1) = 0. (15)

We now de�ne
Ψ̂ = γΨ, Λ = γΘ + Φ, (16)

so that the governing equations (14) and the boundary conditions, (15), can be rewritten as

Ψ̂′′ − a2Ψ̂ + a
1 + γ

γ
R (Λ− Φ) = 0, (17a)

Φ′′ − a2Φ +H [Λ− (1 + γ) Φ] = 0, (17b)

Λ′′ − a2Λ + aΨ̂ = 0, (17c)

Λ′(0) = 0, Λ(0) = (1 + γ) Φ(0), Ψ̂(0) = 0,

Λ(1) = Φ(1) = 0, Ψ̂(1) = 0. (17d)

Equations (17) yield an eigenvalue problem, where R is the eigenvalue to be determined for
assigned values of (a,H, γ). This problem can be solved numerically according to the procedure
described in the next Section 3.1.

3.1. Numerical solution

Equations (17) can be solved numerically by means of a Runge-Kutta solver combined with
a shooting method. More precisely, equations (17) are integrated numerically with the initial
conditions

Ψ̂(0) = 0, Ψ̂′(0) = η, Λ(0) = 1, Λ′(0) = 0, Φ(0) =
1

1 + γ
, Φ′(0) = ξ. (18)

The additional condition Λ(0) = 1 serves to break the overall scale invariance of the solution. On
the other hand, the unknown parameters η and ξ, are determined, together with the eigenvalue
R, by means of a shooting method set up to satisfy the three target conditions at z = 1, namely

Ψ̂(1) = 0, Λ(1) = Φ(1) = 0. (19)
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Figure 2. Neutral stability curves.

This numerical technique is accomplished inside the Mathematica 9 (©Wolfram Research, Inc.)
environment [14]. The Runge-Kutta solver is implemented by the built-in function NDSolve and
the shooting method by the built-in function FindRoot. The FindRoot function allows one to
solve numerically the constraints equation (19). The overall numerical procedure requires the
assignment of the input data (a,H, γ). Once the input data are �xed, a neutral stability curve
R(a) for every pair (H, γ) is obtained. Instability occurs when R > R(a), while linear stability
is for R < R(a). The absolute minimum of R(a) gives the critical values (acr, Rcr) for the onset
of the convective instability.

4. Discussion of the results

We solved the eigenvalue problem de�ned by equations (17) for a wide range of values of the pair
(H, γ). Figure 2 contains di�erent frames, each frame refers to a di�erent value of H. Starting
from the upper left corner, the values of H are: 0.01, 10, 50 and 100. Inside each frame, each
curve is relative to a di�erent value of γ. Figure 2 shows that the onset condition of the instability
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is very sensitive to the quantity γ. As γ decreases, the system becomes more and more unstable.
Very small values of γ, on account of (5), imply a solid phase much more conductive than the
�uid phase. This is in fact a condition very close to the behaviour of a gas saturated metallic
foam.

As shown by Figure 2, the e�ect of a decreasing H is also destabilising. We mention that
larger and larger values of the product γH lead to the asymptotic condition of local thermal
equilibrium. Local thermal equilibrium can be attained by taking the limit H → ∞ with a
�nite nonvanishing value of γ. From equation (17b), this limit leads to Λ = (1 + γ) Φ and, as a
consequence of equations (17), to Φ = Θ. Thus, in this limit, we can rewrite (17) as

Ψ̂′′ − a2Ψ̂ + aRΛ = 0, (20a)

Λ′′ − a2Λ + aΨ̂ = 0, (20b)

Λ′(0) = 0, Ψ̂(0) = 0,

Λ(1) = 0, Ψ̂(1) = 0. (20c)

On the other hand, on account of equation (14b), by taking the limit γ → ∞ with a �nite
nonvanishing value of H, one is lead to Φ = Θ. Thus, the governing equations (14) reduce to

Ψ′′ − a2Ψ + aRΘ = 0, (21a)

Θ′′ − a2Θ + aΨ = 0, (21b)

Θ′(0) = 0, Ψ(0) = 0,

Θ(1) = 0, Ψ(1) = 0. (21c)

The eigenvalue problem given by equations (20) is completely equivalent to that given by (21).
In other words, the local thermal equilibrium condition is attained either by taking the limit
H → ∞ with a �nite γ, or by taking the limit γ → ∞ with a �nite H. We mention that the
solution of the eigenvalue problem equations (20) or (21) was found by Ribando and Torrance
[15], and analysed in detail by Wang [16]. These authors considered a horizontal porous layer
with an iso�ux lower boundary and an isothermal upper boundary, assuming that both these
boundaries are impermeable and that local thermal equilibrium between the solid and the �uid
phase holds. Data on the neutral stability condition and on the critical values of R and a for
the onset of convection with local thermal equilibrium have been reported by [1, 15, 16]. In
particular, we were able to recover the critical values for local thermal equilibrium,

Rcr = 27.097628, acr = 2.3262146, (22)

by solving numerically equations (20) or (21), with a suitably simpli�ed version of the procedure
described in Section 3.1.

The trend of Rcr versus γ and that of acr versus γ, with di�erent �nite values of H, are shown
in Figures 3 and 4, respectively. Hence, these �gures display the e�ects of a departure from
the local thermal equilibrium asymptotic condition (γH � 1). Interestingly enough, Figure 3
suggests that Rcr tends to zero when γ tends to zero, for every �nite value of H. We already
noted above that this regime may be relevant for the study of heat transfer in gas-saturated
metallic foams. In fact, a vanishingly small Rcr means that whatever small value of the heat �ux
qw prescribed on the lower wall leads to a destabilisation of the basic motionless state through the
onset of convective rolls. Another evident feature of Figures 3 and 4 is that the critical values of
R and a approach monotonically the local thermal equilibrium asymptotes (dashed lines) when
γ →∞.
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Figure 3. Plots of Rcr versus γ.
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Figure 4. Plots of acr versus γ.

5. Conclusions

The onset of convection in a horizontal porous layer saturated by a �uid and heated from below
by a uniform heat �ux has been studied. The assumption of local thermal equilibrium has
been relaxed. Di�erent local values of the �uid temperature and of the solid temperature are
assumed, with an inter-phase energy exchange e�ect. The local thermal non-equilibrium thus
yields a mathematical model with two energy balance equations. These equations, together with
the local mass balance equation and Darcy's law with buoyancy force, have been employed to
test the stability of the motionless and local thermal equilibrium basic state of the layer. The
disturbance equations, in a streamfunction/temperature formulation, have been linearised and
solved for the normal modes. We thus obtained an ordinary di�erential eigenvalue problem that
allowed us to study the neutral stability condition, as well as to determine the critical values of
the Darcy-Rayleigh number, R, and of the wave number, a, for the onset of convective rolls.

We pointed out that two dimensionless parameters are crucial in the transition to instability:
the thermal conductivity ratio, γ, and the inter-phase heat transfer parameter, H. When the
product γH becomes very large, the condition of local thermal equilibrium is attained. On the
other hand, small values of γ and H mean signi�cant departures from local thermal equilibrium.
In particular, lower and lower values of both γ and H result into a destabilisation of the basic
state. A signi�cant e�ect has been revealed when γ � 1, a condition approached when the solid
phase is much more conductive than the �uid phase. In fact, when γ � 1, the critical value
of R tends to zero. This feature means that, in this parametric regime, the basic motionless
state is always unstable to small-amplitude disturbances. This result is of special interest for all
the applications involving a highly-conductive solid, such as the gas-saturated metallic foams.
We mention that recently attention in the heat transfer community has been deserved by the
properties of the metallic foams with respect to the design of heat exchangers [17].

Acknowledgments

This work was �nancially supported by Italian government, MIUR grant PRIN-2009KSSKL3.

References
[1] Nield D A and Bejan A 2013 Convect. Porous Media 4th ed (New York: Springer-Verlag)

31st UIT (Italian Union of Thermo-fluid-dynamics) Heat Transfer Conference 2013 IOP Publishing
Journal of Physics: Conference Series 501 (2014) 012004 doi:10.1088/1742-6596/501/1/012004

8



[2] Straughan B 2008 Stability and Wave Motion in Porous Media Appl. Math. Sci. Ser. (New York: Springer-
Verlag)

[3] Tyvand P A 2002 Onset of Rayleigh-Bénard convection in porous bodies Transp. Phenom. Porous Media II

ed Ingham D B and Pop I (Oxford: Pergamon) pp 82�112
[4] Rees D A S 2000 Stability of Darcy-Bénard convection Handb. Porous Media ed Vafai K (Redding, CT:

Begell House) pp 521�558
[5] Barletta A 2011 Thermal instabilities in a �uid saturated porous medium Heat Transf. Multi-Phase Mater.

ed Öchsner A and Murch G E (New York: Springer-Verlag) pp 381�414
[6] Horton C W and Rogers F T 1945 J. Appl. Phys. 16 367�370
[7] Lapwood E R 1948 Proc. Camb. Philos. Soc. 44 508�521
[8] Kuznetsov A V 1998 Thermal nonequilibrium forced convection in porous media Transp. Phenom. Porous

Media ed Ingham D B and Pop I (Oxford: Pergamon) pp 103�129
[9] Rees D A S and Pop I 2005 Local thermal non-equilibrium in porous medium convection Transp. Phenom.

Porous Media III ed Ingham D B and Pop I (Oxford: Pergamon) pp 147�173
[10] Banu N and Rees D A S 2002 Int. J. Heat Mass Tran. 45 2221�2228
[11] Barletta A and Rees D A S 2012 Int. J. Heat Mass Tran. 55 384�394
[12] Amiri A, Vafai K and Kuzay T M 1995 Numer. Heat Transfer A 27 651�664
[13] Yang K and Vafai K 2010 Int. J. Heat Mass Tran. 54 4316�4325
[14] Wolfram S 2003 The Mathematica Book 5th ed (Champaign, IL: Wolfram Media)
[15] Ribando R J and Torrance K E 1976 ASME J. Heat Trans. 98 42�48
[16] Wang C Y 1999 Phys. Fluids 11 1673�1675
[17] Mahjoob S and Vafai K 2008 Int. J. Heat Mass Tran. 51 3701�3711

31st UIT (Italian Union of Thermo-fluid-dynamics) Heat Transfer Conference 2013 IOP Publishing
Journal of Physics: Conference Series 501 (2014) 012004 doi:10.1088/1742-6596/501/1/012004

9


