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Abstract.  One of the first steps in establishing safe handling procedures for explosives is 
small-scale safety and thermal (SSST) testing. To better understand the response of improvised 
materials or homemade explosives (HMEs) to SSST testing, 16 HME materials were compared 
to three standard military explosives in a proficiency-type round robin study among five labor-
atories—two DoD and three DOE—sponsored by DHS.  The testing matrix has been designed 
to address problems encountered with improvised materials—powder mixtures, liquid suspen-
sions, partially wetted solids, immiscible liquids, and reactive materials.  More than 30 issues 
have been identified that indicate standard test methods may require modification when applied 
to HMEs to derive accurate sensitivity assessments needed for developing safe handling and 
storage practices.  This paper presents a generalized comparison of the results among the test-
ing participants, comparison of friction results from BAM (German Bundesanstalt für Materi-
alprüfung) and ABL (Allegany Ballistics Laboratory) designed testing equipment, and an 
overview of the statistical results from the RDX (1,3,5-Trinitroperhydro-1,3,5-triazine) stand-
ard tested throughout the proficiency test.  

1.  Introduction 
Small-scale safety and thermal (SSST) testing is usually the first step in developing safe handling 
practices of energetic materials [1]. These tests were designed for explosives to determine sensitivity 
of the material to handling conditions—drop hammer for impact sensitivity; friction for shear force 
sensitivity; electrostatic discharge (ESD) for spark or static sensitivity; differential scanning calorime-
try (DSC) for thermal stability; many others for specific types of reactivity. 

SSST testing is performed when the sensitivity of material is not known or is in question.  Results 
determine (depending upon interpretation) whether a material can be directly handled, remotely 
mixed, or require complete robotic handling. 

The Integrated Data Collection Analysis Program (IDCA) has been conducting SSST testing on a 
series of homemade (HME) or improvised explosives, utilizing standard SSST testing practices as ap-
plied to military explosives [2].  The testing has come about through a round-robin or proficiency test 
where 19 HMEs and military explosives have been tested by three U.S. Department of Energy and two 
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U.S. Department of Defense Laboratories—Lawrence Livermore National Laboratory (LLNL), Los 
Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), Naval Surface Warfare 
Center, Indian Head (IHD), and Air Force Research Laboratory, Tyndall Air Force Base (AFRL).   

The results so far have indicated that standard testing methods are not always adequate for HMEs, 
as many conflicting and inconclusive results have been documented.  However, there are many aspects 
of the testing results that provide new and critical information to be considered when applying stand-
ard SSST testing methods to HMEs.  This paper presents a generalized comparison of the results 
among the participants, comparison of BAM and ABL friction results, and an overview of the prelimi-
nary statistical analysis of the RDX standard tested throughout the proficiency test. 

2.  Small-Scale Safety and Thermal Testing 
Test apparatus, Impact: LANL, LLNL, IHD—Explosives Research Laboratory (ERL) Type 12 Drop 
Weight Sensitivity Apparatus, SNL, AFRL—Modified Bureau of Mines (MBOM) modified for ERL 
Type 12 Drop Weight; Friction: LANL, LLNL, IHD, SNL—German Bundesanstalt für Materi-
alprüfung (BAM) Friction Apparatus, LANL, IHD, AFRL—Allegheny Ballistics Laboratory (ABL) 
Friction Apparatus; Spark: LLNL, LANL, IHD, SNL, AFRL—ABL Electrostatic Discharge Appa-
ratus, LLNL—custom-built Electrostatic Discharge Apparatus; Differential Scanning Calorimetry: 
LANL—TA Instruments Q1000, Q2000, LLNL—TA Instruments 2910, 2920, Setaram Sensys DSC, 
IHD—TA Instruments Model 910, 2910, Q1000, AFRL—TA Instruments Q2000. 

 
Figure 1.  Examples of SSST testing equipment used in Proficiency Test—a. Drop Hammer, b. BAM 
Friction, c. ABL Friction, d. ABL Electrostatic Discharge, e. Differential Scanning Calorimetry. 

Figure 1 shows representative examples of the SSST testing equipment used in this program [3]. 
Each laboratory has purchased and built equipment over decades.  The versions and configurations are 
similar but not identical. However, for each test, the equipment generally functions by the same prin-
cipal, so most of the results can be compared among the participants. The exceptions to this are BAM 
and ABL friction equipment at IHD and AFRL and the custom-built spark equipment at LLNL.  

Four basic tests are reported—impact, friction, spark, and thermal. The impact test is to evaluate 
the material for sensitivity to being dropped or having something dropped on it. During this test, a 
sample is placed on an anvil and a weight, which can be adjusted for both size and height, is dropped 
on it. The friction test (both BAM and ABL) evaluates the sensitivity of the material to sheer forces, 
such as scraping or pinching. During BAM friction testing, the material is placed on a flat surface and 
a stylus set at different forces (using weights) is dragged through the material. During ABL friction 
testing, the sample is placed on a stage that is moved under a grooved surface set at different forces 
(using pressure).  The spark test evaluates the response of the material to an electric discharge. During 
ESD testing, the material is placed on a grounded surface and a spark is sent through it. The thermal 
test evaluates if energy will be released upon heating, indicating thermal stability. During DSC testing, 
the sample is in a holder and the temperature is increased at a constant heating rate, as the heat flow in 
and out of the sample is monitored. 

Positive results (indication of stimulus level where the material exhibits sensitive) for the first three 
tests are usually a pop, a flash, or the evolution of smoke, or any combination thereof. The way a posi-
tive or negative result is assessed varies among laboratories. Personnel do the monitoring in most tests, 
but electronic equipment is used in some tests. Positive results for a thermal test are usually indicated 
as positive heat flow as a function of time, but are usually displayed as a function of temperature. 
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3.  Comparison of results among testing participants 
In this proficiency test, at least two participants, but usually three to four participants tested each of the 
19 materials.  Except in rare cases, the testing included drop hammer, BAM and ABL friction, ESD, 
and DSC.  The graphs in this section compare the testing results from each of the participants to the 
average of all the participants for each of the materials.  The axes are the value of the sensitivity pa-
rameter.  The x-axis is for the average data value for a specific material, and the y-axis is for the corre-
sponding data from the individual participant for the specific material.  The red line connects the aver-
age of all the data from the participants for the specific materials and the markers are the sensitivity 
value from the individual participants for each of the materials [4].   

 

Figure 2.  Testing results compared for all the participants—A and B, Impact; C, Friction; D, ESD. 

3.1.  Impact testing comparisons 
Figures 2A and 2B compare the impact data as reported by DH50 determined by the Bruceton method.  
The individual laboratory data values above the line indicate a material determined to be less sensitive 
than the corresponding average, and values below the line indicate a material determined to be more 
sensitive than the corresponding average.  Figure 2A shows materials that are very to moderately sen-
sitive to impact and figure 2B shows materials that are reasonably insensitive to impact.  Another set 
of data could not be included because the results were beyond the measuring limits of the equipment 
(insensitive materials).  

Figures 2A and 2B show the following general behavior for the materials: LLNL values (circles) 
are above the average for DH50 values below 40 cm: LLNL values (circles) are below the average for 
DH50 values above 90 cm; LANL values (squares) are usually the same as the average for DH50 values 
below 40 cm; LANL values (squares) are above the average for DH50 values of 90 cm or more; AFRL 
DH50 values (triangles) usually are the lowest of the group for a specific material; IHD values (dia-
monds) usually track corresponding LANL DH50 values, but are lower in value. 

Although the individual participants derive different values for a specific material, the trends above 
show some consistency and have a speculated basis in experimental parameters.  One strong possibil-
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ity is linked to the method of detection of a positive event.  Both LLNL and LANL use microphones 
as well as observation.  However, the microphones are different types with different response factors 
and different placement.  LANL and IHD have almost identical equipment, but differ in the detection 
method.  AFRL has equipment that is MBOM with type 12 tooling, which is different than the rest of 
the participants.  This configuration could produce a different type of acoustic and reaction environ-
ment so observation could be categorically different.   

3.2.  BAM Friction testing comparisons 
Figure 2C shows the comparison of the F50 values determined by a modified Bruceton method. As be-
fore, the red line is the average value line and the data points are from each participant.  Only data 
generated by LLNL, LANL, and IHD are including because AFRL does not have BAM friction 
equipment.   

In general, the LLNL values (circles) are above the average line, indicating LLNL finds the materi-
als less sensitive to friction than the other participants.  The corresponding F50 values for LANL and 
IHD track each other in many cases.  These behaviors can be explained by differences in equipment 
configurations.  The LLNL apparatus is inside a sealed glove box with a HEPA filter and driving ven-
tilation fan to contain volatiles, while the other participants have just ventilation hoses.  The result is 
that the LLNL equipment is acoustically more isolated and that the operator cannot hear a positive 
reaction as well as in the other cases while LANL and IHD have similar configurations and therefore 
obtain similar results.  

3.3.  ESD testing comparisons 
Figure 2D shows the comparison of the Threshold Initiation Level (TIL) values.  This graph includes 
mostly LANL and IHD data with a few measurements by LLNL and AFRL.  The red line is the aver-
age value line.   

In general, the IHD values are above the average values, and LANL values are below the average 
values, although there are exceptions to this. Possibly this difference can be explained by humidity 
effects, which has been documented to effect static discharge.   IHD has typically 50% relative humid-
ity all year; LANL has <10% relative humidity except for one or two months a year.  

4.  BAM Friction testing results compared to ABL Friction testing results 

 
Figure 3. BAM friction data compared to ABL friction data. 

Only IHD used both BAM and ABL friction equipment in the proficiency test.  This provided a pleth-
ora of data by both methods at the same laboratory [5].  The IDCA examined this data to see if there 
were any numerical relationships between the corresponding data from the two test methods.  Figure 3 
shows the TIL (left side) and F50 (right side) values for each of the materials.  The x-axis is for the 
ABL data values, and the y-axis is for the corresponding BAM data values.  Clearly there is no corre-
lation of the data between the two testing methods.  Dividing the data into subgroups does not provide 
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any correlations (military standards, TIL R2 = 0.6818, F50 R2 = 0.9332; HMEs, TIL R2 = 0.5372, F50 R2 
= 0.16708).   

5.  Preliminary statistical analysis of the RDX standard 
The RDX Standard was tested four times throughout the proficiency test and each test was at least in 
triplicate.  This provided a substantial amount of data for possible statistical analysis and the results 
could be used as the basis for the statistical evaluation of the other materials in the proficiency test [6]. 

 
Figure 4. DH50 values grouped by parameters and participants—participant is indicated; sandpaper is 
designated by grit size; DH50 values derived by B = Bruceton method; N = Neyer (D-optimal) method. 

The RDX was from the same source, prepared, and stored in the same manner for all participants.  
There were variations in the testing conditions—sandpaper type, striker weight, temperature, humidi-
ty, and detection method, as well as minor equipment variables, such as surface conditions, age, and 
calibration.  Figure 4 shows the impact data grouped according to the participant, sandpaper (identified 
by grit-size), and data method.  The boxes are 50% of the data, the median is the horizontal line, the 
mean is the middle of the box and extremes indicated by vertical bars.  Clearly, the groups are spread 
apart, but some extreme values indicate overlap.  ANOVA analysis indicates that at least one set is 
statistically different.  Subgrouping, based on specific parameters such as sandpaper type, tightens up 
the distribution.  Application of further statistical analyses, such as Tukey and Fisher, show that the 
AFRL, 180, B stands out as different than the rest.  The results of these analyses will be discussed in 
more detail elsewhere [7]. 

 
Figure 5. Overall DH50 values compared as a function of impact testing parameters. 

Figure 5 shows the DH50 values as a function of some of the testing parameters discussed above.  
The only parameter that shows any systematic effect is the sandpaper type.  Temperature, humidity, 
and striker weight exhibit essentially random patterns.   

6.  Summary and conclusions 
Differences in testing results from the proficiency test indicate that equipment configuration and de-
tection modalities are the principal causes for the differences in results.  These differences are suffi-
cient to establish statistical differences in results among the testing laboratories for a specific material.  
These differences appear to be more systematic than random.   
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