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Abstract. At the APS SCCM in 2009, Hill, Zimmermann and Nichols showed that assuming 
burn fronts propagate at constant speed from individual point hotspots distributed randomly in 
a volume, the reaction rate history could be determined.  In this paper a simple analytic 
approximation is found for the time history of the pressure in the volume.  Using acoustic 
theory, the time history of the pressure field for burning from a single spherical, isolated 
hotspot of finite radius is developed.  Then at any point in the volume, the overall pressure 
history is determined from the sum of the pressure fields from all the individual hotspots.  The 
results are shown to be in qualitative agreement with 1D mesoscale hydrocode calculations of 
the reaction and burning from a finite size spherical hotspot. 

1.  Introduction 
As part of developing a better understanding of the relationship between mesoscale and continuum 
models of reactive burn in a heterogeneous explosive, this paper investigates how the pressure field 
from a distribution of hotspots varies with time.  It is an extension of the work by Hill, Zimmermann 
and Nichols [1], who considered the bulk reaction history for burning from hotspots distributed 
randomly in a volume.  They assumed that each of the burn fronts was initiated at time zero from 
individual hotspots of initial radius, a, and propagates at constant speed, b.  By considering the 
probability that any point in a volume containing a distribution of burning hotspots has not yet reacted, 
Hill, Zimmermann and Nichols allowed for the gradual overlapping of burn fronts and showed that the 
time history of the bulk extent of reaction is 

            3abt4exp1 3          (1)   
where  is the volume fraction of reaction,  is the number of hotspots per unit volume and t is time.  
In their analysis, Hill et al assumed that the hotspots were point sources (a=0); equation (1) is a simple 
generalisation. 

The development of the pressure field is a hydrodynamic problem, in which information about 
burning propagates away from each hotspot at the velocity of sound, ahead of the burn front.  
Typically the ratio of burn front speed to sound speed is ~0.001, which has a significant effect on the 
resulting pressure field.  Initially, the pressure field for a single isolated hotspot is developed and then 
the problem of a distribution of hotspots is considered.  A simple analytic model and 1D mesoscale 
hydrocode calculations with heat conduction and Arrhenius kinetics are used to address the problem. 
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2.  The analytic model for an isolated spherical hotspot 
Analytically, it is not possible to simultaneously model the burning process and develop the 
hydrodynamics of the overall pressure field.  Since the main aim of this paper is to develop the 
hydrodynamic field, a simplifying assumption is made that reaction is instantaneous.  The burn front 
then becomes a constant velocity discontinuity that converts non-reacted material ahead into reaction 
products behind the burn front. 

The problem is analysed by writing the parameters in the 1D spherical equations of motion as 
scaled deviations from the bulk explosive state, i.e. particle velocity (u/c1), density (/1) and 
pressure (p/1c1

2), where 1, is the bulk density and c1 is the bulk sound speed.  The assumption is 
made that the scaled parameters and their derivatives are all first order small, so that to first order, 
products of these terms can be neglected.  The equations of motion then reduce to the wave equation, 
which can be solved using a velocity potential method [2]. 

At time zero, the material in the hotspot is assumed to instantaneously change into reaction 
products at pressure deviation p = 1c1

2, where  is the thermicity parameter.  To simplify the 
analysis further, the sound speed in the products and non-reacted explosive are both assumed to equal 
c1, so that the p –  relation for the two components can be summarised by  

       2
11

2
1 c'c'p          (2) 

where  = 0 for the non-reacted explosive and  = 1 for the reaction products. 
Using the same approximations, the pressure difference across the burn front reduces to 
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where subscript s refers to non-reacted explosive, subscript g to the gaseous reaction products, and  is 
the ratio of the constant burn front speed, b, to the bulk explosive sound speed, c1.  Equation (3) 
implies that pressure ahead of the burn front is greater than the pressure behind. 

3.  Mesoscale calculations 
The mesoscale calculations used a one-dimensional Lagrangian hydrocode, to which heat conduction 
and a single step Arrhenius reaction rate have been added [3].  A linear Gruneisen equation of state 
(EOS) is assumed for the non-reacted explosive, a JWL EOS for the reaction products, and pressure 
and temperature equilibrium is assumed for partially reacted explosive.  The hotspot calculations 
consist of a central higher temperature region, representing a generic hotspot, surrounded by cooler, 
bulk explosive.  Reaction begins in the hotspot and propagates outwards as a burn wave.   

4.  Single isolated spherical hotspot 
Figure 1 is a wave diagram for the evolution of the pressure field for a single isolated spherical hotspot 
in the analytic model.  At time zero, the hotspot OA, of radius a, instantaneously reacts and a pressure 
deviation c2 is generated.  It is assumed that a burn front AB is created instantaneously and that it 
propagates at constant velocity b, behind which are reaction products and ahead is non-reacted 
explosive. 

The pressure discontinuity at A is resolved by a shock AS propagated into the non-reacted 
explosive and a rarefaction AC propagated into the hotspot, which is reflected at the axis as a 
rarefaction CR.  Because the sound speed has been assumed to be equal between the reactants and 
products, there are no further reverberations in the hotspot.  
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Figure 1. Wave diagram for a spherical isolated hotspot. 

 
The analytic solution for the velocity potential is successively built up in the regions OAC, ACE, 

SAER, etc., until the pressure profile along a constant time line, for example DBRS, is defined.  The 
pressure profile consists of three regions – a constant width, leading pressure pulse RS of width 2a, a 
reacted burn region DB behind the burn front of growing radius (bt+a) and the main pressure field BR, 
ever expanding at rate (c1 – b). 

A schematic pressure profile along DBRS is shown in figure 2.  The pressure deviation, DB, inside 
the burn front, pburn, is constant in space and time, increases with burn front velocity, and is 
proportional to 2. 
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Immediately ahead of the burn front the pressure is higher (equation (3)), but between the burn 
front and the shock pulse, pressure deviation, pfield, in region BR decays like 1/r, but again increases 
with burn front velocity and is overall proportional to 2. 
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The pressure pulse, of constant width 2a, has a leading shock and trailing rarefaction and also 
decays in amplitude as 1/r 
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In any interval of time t, the burn front increases its radius by bt, but the overall profile expands 
by the much greater increase in radius c1t.  The energy released during t is rapidly spread at velocity 
c1 and sustains the burn front and the pressure distribution both behind and ahead of the burn front. 

Following Handley [3], the material simulated in the mesoscale calculations was HMX, shocked to 
~20 GPa.  However, to find the pressure field from an isolated hotspot, it was necessary to artificially 
speed up the burn front by increasing the thermal conductivity, in order to avoid interference from the 
pressure pulse being reflected from the outer boundary of the computational domain. 

Figure 3 shows a pressure profile from a mesoscale calculation with an inset showing more detail 
(circled) inside the burn front.  The hotspot was initially of 2.4 m radius with a temperature of 2600 
K.  The results show that, despite the simplifying assumptions of the analytic model, including the 
assumptions of instantaneous reaction and a common sound speed, there is qualitative agreement with 
the mesoscale hydrocode calculations. This includes: a constant pressure inside the burn front, a 
narrow burn front with higher pressure immediately ahead, decaying to an inverted N-shaped pressure 
pulse, albeit spread out because of the time for the reaction to occur in the hotspot. 
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        Figure 2. Analytic pressure profile.            Figure 3. Mesoscale calculation. 

5.  Pressure field for a distribution of hotspots 
The pressure fields in the analytic approximation are solutions of the wave equation.  It follows that 
the pressure fields of individual hotspots can be added together to determine the pressure field for a 
distribution of hotspots in a volume.  Like the derivation of the reaction rate by Hill et al [1], it is 
assumed that there are  hotspots per unit volume, all of initial radius a, and all activated at time zero. 

At time t, at any point A in the volume, the hotspots whose burn fronts have expanded to reach or 
pass A will lie at zero time in a sphere of radius (bt+a) surrounding A; hotspots whose leading 
pressure pulse encloses A lie in a spherical shell between radii (c1t-a) and (c1t+a), and finally hotspots 
that lie between radii (bt+a) and (c1t-a) will contribute from the general pressure field between the 
burn front and the pressure pulse.  Because their pressure pulses have not yet reached A, hotspots 
lying outside radius (c1t+a) at time zero do not contribute to the current value of pressure deviation at 
A. 

Allowance needs to be made that some of the burn fronts have overlapped at time t.  Analysis in 
planar geometry shows that at the intersection of two burn fronts, burning ceases and rarefactions are 
propagated outwards at speed c1.  In spherical geometry this suggests that the contribution of hotspots 
is reduced by the degree of overlap of the hotspots.  Hence to allow for overlaps, the assumption is 
made that the pressure contribution from those hotspots is reduced to the same extent as in the analysis 
by Hill et al [1].  In any volume V containing V hotspots, the spherical burn surfaces at time t have 
notionally expanded to volume 4(bt+a)3V/3.  Allowing for burn front overlap, the total volume of 
reaction products is V.  Thus the factor to multiply the sum of the pressure integrals is the ratio 
/{4(bt+a)3/3}.  Hence at any time t the total pressure deviation from multiple hotspots is 
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Figure 4 shows an example of the contributions to the total pressure for a calculation with 1 m 
radius hotspots, at average separations of ~16 m, assuming  = 0.001.  The contribution from the 
reaction products in the neighbourhood of A, pburn, is negligible.  After ~0.7 s, the contributions from 
the regions between the burn front and the pressure pulse, pfield, dominates the total pressure.  The 
contribution from the pressure pulses, ppulse, reaches a maximum at ~2.8 s, after which the 
attenuation factor 1/r begins to dominate the increasing number of hotspots that contribute to ppulse. 

When the pressure components from equations (4) to (6) are substituted into equation (7) and the 
integration is carried out, terms cancel and equation (7) greatly simplifies to give the mean bulk 
pressure deviation history as 

        tct'p 2
11           (8)   
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This equation has the same form as that given by CIM [4], a continuum level reactive burn model 
that also uses a linearised partially reacted equation of state.  CIM is an exact analytic solution to the 
nonlinear reactive burn equations of motion, which was used to simulate the initial stages of the 
sustained shock to detonation transition.  In the case considered in this paper and the paper by Hill et 
al, in which reaction starts at time zero, CIM gives the same growth of pressure deviation as equation 
(8), with (t) replaced by (t), where  is the extent of reaction per unit mass.  However in this case, 
where there is no bulk motion and the bulk density is constant,  and  are identical. 

The only way of simulating the pressure field from multiple hotspots in the 1D mesoscale 
calculations is to make the outer boundary rigid, corresponding to assuming a series of spherical shell 
hotspots surrounding a central hotspot.  Figure 5 shows the growth of pressure with time for a 
calculation in which a 1.2 m-radius spherical hotspot initially at 1600 K, is surrounded by a 9 m-
thick shell of ambient temperature HMX. The configuration was identical to the cylindrical 
simulations described in the Flame Propagation section of [3], and corresponds to the analytic 
simulation in figure 4.  The rise of pressure deviation using the analytical model is again qualitatively 
similar to the mesoscale hydrocode-calculation. 
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        Figure 4. Total pressure history.              Figure 5. Mesoscale calculation. 
 
Quantitative comparisons are not possible because the simple model uses an extremely simplified 

equation of state with only two constant parameters, the same sound speed in the reactants and 
products and assumes a constant burn speed.  The mesoscale calculations used proper equations of 
state, and it was found [3] that the burn speed decreases because the temperature in the products cools 
as the burn front propagates.  In addition the simple model assumes a random distribution of hotspots 
across a volume, while the mesoscale calculation assumes the spherical symmetry of a hotspot 
surrounded by a series of equally separated spherical shell hotspots. 

6.  Discussion and Conclusions 
Making a number of simplifying assumptions, an analytic model has been developed for the pressure 
field surrounding an isolated, spherical, burning hotspot.  The solution depends on the ratio, of the 
assumed constant burn front speed to the local sound speed, where typically  ~ 0.001.  The pressure 
deviation is constant behind the burn front, is slightly higher immediately ahead of the burn front and 
decays like 1/r between the burn front and an inverted N-shaped leading pressure pulse propagated 
into the explosive.  One dimensional mesoscale hydrocode calculations, with Arrhenius kinetics and 
heat conduction, show that the pressure distribution agrees qualitatively with the simple model, 
including the general form of the pressure pulse. 

The simple model has been used to determine the time history of the pressure field at any point in a 
distribution of hotspots, by adding the contributions from each hotspot up to a distance of ~c1t from A.  
It is shown that the total pressure deviation is: 
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a. dominated by the summation of the pressure fields lying between the burn front and the 
pressure pulse for each hotspot, and 

b. reduces to the simple relationship (8) that agrees with the pressure field deduced at 
continuum level using the analytic reactive model CIM [4]. 

The Hill, Zimmerman, Nichols model [1] for the reaction rate from a distribution of hotspots shows 
that reaction rate is a local phenomenon, depending on the closure of burn fronts from adjacent 
hotspots, i.e. over distances of a few micro-metres.  On the other hand, the development of the 
pressure field depends on contributions from burning hotspots up to millimetres away. 

At least in the simple configuration of a field of hotspots simultaneously starting to react at time 
zero, the Hill et al paper and this paper have shown that there is a direct equivalence between the bulk 
reaction rate history and pressure deviation history from a distribution of hotspots and reactive 
hydrodynamics at the continuum level.   It is reasonable to assume that such equivalence applies to 
other shock initiation configurations, where the initiation of hotspots may be time dependent and/or if 
the field of hotspots is of limited extent. 
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