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Abstract. At the 2011 APS conference, Terrones, Burkett and Morris published an
experiment primarily designed to allow examination of the propagation of a detonation front
in a 3-dimensional charge of PBX9502 insensitive high explosive (IHE). The charge is confined
by a cylindrical steel shell, has an elliptical tin liner, and is line-initiated along its length. The
detonation wave must propagate around the inner hollow region and converge on the opposite
side. The Detonation Shock Dynamics (DSD) model allows for the calculation of detonation
propagation in a region of explosive using a selection of material input parameters, amongst
which is the D(K) relation that governs how the local detonation velocity varies as a function
of wave curvature. In this paper, experimental data are compared to calculations using the 2D
DSD and newly-developed 3D DSD codes at AWE with a variety of D(K) relations.

1. Introduction
The ‘IHE experiment’ was designed and fired at Los Alamos National Laboratory (LANL)
to measure detonation propagation around an elliptical hole within a circular cylinder of
PBX9502 [1]. As shown in figures 1 and 2, the cylinder is confined by an outer steel liner
and inner tin liner, and has a depth of 10 cm. The charge is initiated along the entire cylinder
depth by a PBX9501 booster which is itself initiated with a line-wave generator. This initiation
train is inclined at a 30◦ angle to the major axis of the inner ellipse. Detonation wave propagation
is captured by a series of proton radiography density maps.

Prediction of detonation wave propagation in high explosive can be achieved using a number
of methods. The Detonation Shock Dynamics (DSD) model allows for the variation in local
detonation velocity, D, with wave curvature, K. As the overall detonation wave curvature
increases the propagation speed reduces. This effect is greater for less-ideal explosives such as
IHE due to the steepness of the D(K) relation. For the IHE experiment, the asymmetric
cylindrical charge of PBX9502 means that the speed of detonation propagation will differ
between the upper and lower regions, so the data can be used in DSD model validation. In
DSD the angle the detonation wave makes with a charge boundary is constrained to a maximum
value dependent on the adjacent material.

Predictions of detonation propagation in the IHE experiment were made by Terrones et al [1].
The 3D hydrocode PAGOSA was used in conjunction with programmed burn, DSD and Forest
Fire models. From these it was concluded that DSD gives the best overall reproduction of
data under fine mesh resolution. In this work we aim to quantify burn-time differences in DSD
from firstly applying various existing D(K) relations for PBX9502, and secondly by comparing
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Figure 1. Cross-section schematic of the IHE
experiment, from [1]. The booster is initiated with a
line wave generator (LWG), giving rise to an effective
detonation point (DP) in the DSD calculation.

Figure 2. Assembly view of the
experiment, from [1].

results using AWE’s DSD codes in 2D and 3D. Both codes use a level-set scheme to propagate
the detonation wave through a conformal mesh, having the advantage over an Eulerian mesh
in that the HE-inert boundaries are explicitly defined. The conformal mesh is generated in 2D
by an in-house Lagrangian hydrocode and in 3D by the PMESH meshing code developed at
Lawrence Livermore National Laboratory.

2. Validation procedure

2.1. DSD methodology
To model the DSD detonation wave propagation in PBX9501 and PBX9502 explosives, a number
of D(K) relations are selected from independent analyses of rate-stick wave-shape data. A single
relation for PBX9501 is used based on analysis by T Aslam et al [2]. Three D(K) relations for
PBX9502 are used, from publications by Aslam [3] and L Hill et al [4], and a relation produced
by D Swift [5] using a set of rate-stick data from LANL. The Aslam and Swift relations were each
calibrated to 7 wave-shapes from rate-sticks machined from recycled material. The Hill relation
used the same data with 15 additional wave-shapes at different starting temperatures, material
lots and initial densities. The relations are shown in figure 3, lying reasonably closely despite
the different PBX9502 material and the variation in calibration method used in each analysis.
In this work we apply DSD analysis to an experiment at ambient temperature with PBX9502
originating from a lot of virgin material. No initial charge densities were quoted in [1], [3] or [5].
The initial density for PBX9502 of 1.890 g/cm3 is chosen as a baseline value with an uncertainty
margin of ±0.005 g/cm3. Sensitivity to initial density will be investigated within this range, for
which three D(K) relations encompassing the full density range are shown in figure 3.

In each rate-stick calibration study, a constraint was applied to the angle of the shock at
the charge boundaries. This was performed to produce the best fit to the overall shock shape.
The boundary angle may vary by a large amount (±10◦) and still produce as-good a fit to the
overall shock, as was reported by Hill et al in their virgin-lot study [4]. Effective boundary angles
must be used by DSD to give optimum reproducibility of the complete set of wave-shape data;
empirical boundary angles are typically adequate for this task. Fixed DSD boundary angles
are used for all three PBX9502 D(K) relations; 58◦ for unconfined HE, 62◦ for tin confinement
and 65◦ for steel. The angles for tin and steel confinements take into account the thin layer of
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Figure 3. Detonation-velocity
curvature relations for PBX9502.

gel between the two materials. A thin layer effectively decreases the confinement between two
materials. The angles are estimated from simulations of steady-state detonation in a cylinder
test where the detonation behaviour is controlled by the CREST reactive burn model [6].

The DSD model is used to calculate detonation burn-time isochrones in both 2D and 3D.
The 2D model assumes there is an infinite charge depth and the component of detonation
wave curvature is zero along the depth axis. The 3D model uses the finite depth of 10 cm and
appropriate boundary constraints are imposed at the two ends of the cylinder. Due to the
finite depth, the overall wave curvature should increase slightly which then would slow down the
detonation wave compared to the 2D model. The timing of the DSD detonation is normalised to
match the first experimental isochrone by way of minimising the sum of squared time residuals.

In the experiment, the proton radiography diagnostics were aimed down the depth of the
cylinder. For each time snapshot, the full 3D detonation wave was captured on a single 2D
image. Each image therefore represents an average density through the entire depth of the
charge. However, since wavefront curvature is mainly confined to the edge, the radiograph
roughly represents the tangent to the detonation wave at the centre line. Given this experimental
error, DSD burn-time validation should take into account this uncertainty in timing. The DSD
model sensitivity will be tested given the different D(K) relations and dimensionality.

2.2. Validation metric
For quantitative comparison of DSD calculations to one another and also to past analysis, we
describe the cross-section of the PBX9502 region in the same way as Terrones et al [1]. The
distance from the origin is given by the polar function

h =
(a+ s)(b+ cs)√

(a+ s)2 sin2(θ − 30) + (b+ cs)2 cos2(θ − 30)
, (1)

with parameters a= 4, b= 3.3359 and c= 1.6641. The function when s= 0 represents an inclined
ellipse with major and minor axes a and b, i.e. charge inner surface, and when s= 1 represents
a circle of radius 5 cm, i.e. charge outer surface. The metric function is given by

∆T (texpt, s) = tsim (θexpt, s)− texpt, (2)

which serves as a quantitative measure of how well the DSD detonation wave is timed against
experiment. A negative value of ∆T means that the calculated shock arrives sooner than that
indicated by the experimental data. The overall error in detonation timing is encompassed in
a global average metric, 〈∆T 〉 = 1

N

∑
|∆T |, for both upper and lower regions of the charge,

denoted 〈∆T 〉U and 〈∆T 〉L respectively.
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3. Results and discussion
For all PBX9502 D(K) relations shown in figure 3, the global average metric is computed from
2D DSD calculations. The metric values are shown in table 1 and are comparable to those from
previous DSD calculations by Terrones et al [1] where there was an average difference of ∼ 60 ns.

Metric plots are shown for two isochrones for quantatitive comparison in figure 4. The density
variation from Hill’s D(K) relation produces little change in detonation wave timing in the IHE
experiment. However, the detonation wave propagation is too slow in the upper region, despite
the fact that the D(K) is calibrated to virgin material. The extra constraints placed on the
D(K) for additional temperatures and densities may have compromised its accuracy in the
region of interest. The density effect is seen to be second order compared to the choice of D(K)
relation. Aslam’s relation produces detonation propagation that evolves faster than experiment.

The wave-shape data used in Swift’s calibration have curvatures no greater than 0.44mm−1.
The failure curvature of 0.74mm−1 in the D(K) relation is a result of the form of non-linear
function used in the D(K) fitting process. Curvatures up to and including this failure value
are experienced in the DSD calculations in regions of corner-turning (adjacent to the corners of
the booster) and on the far inner surface of the charge. Similarly, curvatures smaller than the
calibrated data are experienced where the detonation waves converge at the point furthest from
the booster. This degree of extrapolation may lead to slight timing errors in the small regions
affected. Since the same rate-stick diameter range was used for all three D(K) calibrations, the
amount of curvature extrapolation will be comparable for all of the DSD calculations.

Swift’s relation produces the best overall 2D DSD result compared to the data, a more-
complete set of results from which are shown in figures 5 and 6. The main discrepancy
between DSD and experiment is for the lower region; the DSD timing is advanced compared
to experiment, which is most apparent at times greater than 14µs. This may be attributed
to the occurance of a dead zone in the experiment around the corner of the PBX9501 booster
which would delay the overall detonation wave, which is not accounted for in the simulation.
The dead zone is thought to be larger for the lower region due to the effective detonation point
being situated 2 mm below the centre-line of the booster. This would produce a sharper corner
for the detonation wave to turn around and an overall delay in the lower region.

Table 1. Global average metric from 2D DSD calculations.

D(K) for PBX9502 〈∆T 〉U (ns) 〈∆T 〉L (ns) Overall match

Swift 59 65 Balanced
Aslam 45 93 Too fast
Hill (ρ0 low→high) 89 / 92 / 96 51 / 47 / 48 All too slow

To test the 3D-ness of the IHE experiment, Swift’s D(K) relation was used in both 2D and
3D DSD calculations. Isochrones are shown in figure 7 to compare results from 2D, and 3D both
on the mid-plane and the edge of the cylinder. It is found that, for the final isochrone, by going
from 2D to 3D induces an average delay of ∼ 40 ns at the mid-plane, which is significant enough
to warrant a 3D code in order to correctly model the experiment and reproduce detonation wave
timing to high precision. The move in 3D from the mid-plane to the edge induces a further delay
of 110 ns, demonstrating the effect of varying detonation wave curvature along the depth of the
charge and its significance in terms of detonation wave timing.

As seen from DSD calculations in 2D, Aslam’s relation produced consistently fast results
compared to experiment. To some extent this is compensated for by the delay brought in by
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Figure 4. Metric plots from 2D DSD calculations for a range of PBX9502 D(K) relations.
Upwards triangles refer to the upper region and downwards triangles to the lower region. The
legend for D(K) relations is consistent with figure 3.

Figure 5. Detonation isochrones from
2D DSD calculation using Swift’s D(K)
relation (solid lines) compared to exper-
imental data (points) for isochrones at
3.85 to 17.85µs in 1µs intervals.

Figure 6. Metric plots from 2D DSD
calculation using Swift’s D(K) relation
for the upper (red) and lower (blue)
halves of the IHE region.

going from 2D to 3D; metric plots are compared to the equivalent result using Swift’s relation
for a selection of isochrone times in figure 8. With this additional 3D delay, Swift’s relation
produces detonation isochrones that are too slow below 10µs. Aslam’s relation in 3D produces
a better match to the data for the majority of isochrones both upper and lower regions. The
exception still remains, however, for isochrones above 14µs in the lower region; here the DSD
detonation wave travels too quickly for reasons previously discussed.

4. Conclusions
The DSD model has been used to model the IHE experiment in both 2D and 3D. The delay in
the detonation wave is on average ∼ 40 ns in by going from 2D to 3D (mid-plane) and a further
110 ns upon moving from the mid-plane to the charge edge. Of the three D(K) relations tried,
Swift’s appears to give the best balanced results. The presence of dead zones (possibly larger in
the lower segment) may have influenced the wave-shape in the experiment.
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Figure 7. Detonation isochrones from 2D and 3D DSD calculations using Swift’s D(K) relation.

Figure 8. Metric plots from 2D (black) and 3D (orange) DSD calculations using Swift’s (top 3
plots) and Aslam’s (bottom 3 plots) D(K) relations.
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