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Abstract. A description of the response of sand to extreme loads is very important for the 
evaluation of the sand ejecta impact effects on various targets. Sand is a complex material to 
simulate because of its porosity where the inter-phase equilibrium is hard to achieve under 
transient shock wave loading. A previously developed two-phase model with strength has been 
implemented in CTH and applied to sand. The shock response of the sand, including the 
Hugoniot abnormality known from the literature for highly porous silica, is adequately 
described with the material model. The sand unloading effects appearing as the ejecta are 
observed in the present work using dynamic flash X-ray of an aluminium target plate loaded by 
limestone sand ejecta from the detonation of a buried high explosive charge. The CTH 
modelling results compared with the flash X-ray images have demonstrated good agreement, 
particularly, in the description of momentum transfer to the target. 

1.  Introduction 
Sand and soil ejection effects due to detonation of a buried high explosive (HE) charge are associated 
with the behavior of porous materials subject to the loading by shock and release waves. Previous 
studies have mainly observed after-test effects to a target [1,2]. A further advancement in the sand 
ejection observations was measurements of the momentum deposited onto a target including time-
resolved observations [3,4]. These measurements, however, involved a significant inertial contribution 
from the momentum measurement device (e.g., pendulum). Dynamic observation of sand ejecta has 
been conducted in tests [5] using a flash X-ray technique. However, snapshots of the soil ejecta do not 
provide the inside-ejecta distribution of mass and velocity, enabling one to trace only the ejecta shape. 
Therefore, the time resolved deposition of momentum to a potential target is difficult to evaluate, 
whereas this is particularly important for the assessment of the shock wave effects in the target. 

The present work involves the experimental and numerical analysis of the dynamic response of a 
target subject to loading from the sand ejecta. The experiments have recorded the flash X-ray images 
of a deforming plate, loaded by the sand ejecta from a buried HE charge, in a quasi two-dimensional 
(2D) set-up. For moderate stand-off distances between the soil and target, where the gaseous products 
and the air within a porous material are in velocity equilibrium with the soil/sand particles, the two-
phase model [6] can be employed for description of the shock response of the porous material. An 
effect of possible strength change of the condensed constituent of the material due to high-temperature 
effects during the loading by the detonation products is considered and is taken into account by the 
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introduction of a suitable constitutive equation. The model has been implemented in the CTH 
hydrocode and validated against the observed dynamic target deformation.  

2.  Experimental 
The experimental assembly approximates a two-dimensional set-up in (x,y)-space. The loading is 
achieved by a 4x2 cm HE main charge with a 24 cm-extension of the charge in the z-direction. The 
main charge, sitting on a thick steel base, is initiated by a linear 3 mm thick charge initiated by an 
explosively lensed line wave generator (figure 1(a)). The explosive used for both the main charge and 
the linear charge is Primasheet 2000, an RDX based explosive. The charge is buried under a layer of 
sand with 4 cm overburden for the main charge. The average density of sand is 1.35 g/cm3, and the 
sand is contained within a 10 mm-thick box forming the assembly shown in figure 1(b). After 
initiation, the detonation products and sand ejecta load the 4 mm thick target plate made from 6061-T6 
aluminium, and the side view of the deforming target is projected onto a digital X-ray cassette. The 
two-dimensional schematic of the set-up representing the side view projected onto the X-ray cassette 
is shown in figure 1(c). The result is two flash X-ray images, separated in time, superimposed for each 
shot. The test series included four tests with a typical result for one of the tests shown in figure 1(d). 

 

Figure 1. Experimental set-up involving a target plate subject to loading by sand ejecta from a 
buried high explosive charge (a-b). Two-dimensional schematic of the set-up (c) and the flash X-
ray image (d) of the target plate (two exposures on the same film) for Test 2.  
 
The time marks of the X-ray images relative to the detonation wave initiating the linear charge 

(shown as the initiation point in the schematic of figure 1(c)) are summarized in table 1. Specifically, 
Test 1 recorded the target images #4 and #8, Test 2 – #3 and #7, Test 3 – #1 and #5, and Test 4 – #2 
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and #6. For example, the image in figure 1(d) visualizing the target images #3 and #7 is taken from 
Test 2. When analyzing, the X-ray images have been flipped about the vertical axis in order to agree 
with the numerical set-up. 

 
Table 1. Time marks of the flash X-ray images for the 4 tests. 

# 1 2 3 4 5 6 7 8 

Time, µs 340 380 380 412 440 440 480 540 

 
The observation angle from the X-ray pulser head gives a horizontal divergence of approximately 

10%. Markers, consisting of steel inserts along the plate edge at the front and rear, spaced at 50 mm, 
have been positioned on the target plate. These can be seen in the static image of the undeformed plate 
in figure 1(d). The markers have been used for the evaluation of the plate deformation and accuracy 
with the maximal error of the determined plate position being less than 9%.  

3.  Model 
The two-phase porous material model with strength considers a porous material as a mixture of 
gaseous (first phase) and condensed (second phase) components. Strength for the first phase is 
ignored. The model [6] incorporates the conservation laws, the shear deformation rheological law, and 
the constitutive equations of the inter-phase exchange for mass, dilatation, heat, and shear strain work. 
The mass exchange between phases is neglected in the present case. The compaction kinetic is taken 
from [7] and the heat exchange kinetic from [6,8]. The shear strain rheology and strain work are only 
considered for the condensed phase (granular or consolidated compact) and the kinetic is determined 
from two yield limit points (for example, static, Ys, and dynamic, Yd) at two strain rates [6,8]. 

The model equations are closed with an equation of state (EOS) for each of the constituents in the 
form of internal energy against density, strain and entropy. Using the mixture additive rule for the 
internal energy, e, provides an EOS for the porous material. The thermodynamics rules allow us to 
calculate all dependent thermodynamic parameters by differentiation of e, including pressure, affinity 
of the Gibbs energies (the chemical potential), the compaction rate, shear stress, strain work exchange 
rate, temperature, and temperature imbalance. 

The model has been complemented with a ‘sintering’ kinetic dξ/dt = f(ξ,T). The function f contains 
an energy activation term that initiates treatment of the sintering process and adapts the skin model 
formulated as the powder consolidation theory in [11]. As a result, the auxiliary parameter ξ manages 
consolidation, the transition from a low strength regime at room temperature to a high strength regime 
at a temperature where sintering of the condensed phase occurs. 

The above stated version of the model has been implemented in the CTH hydrocode [9]. CTH is a 
multi-material, large deformation, strong shock wave, solid mechanics code developed at Sandia 
National Laboratories [10]. The present implementation involves modification of subroutines in 
Lagrangian and Eulerian parts of the CTH code [9] in the entries related to the cell thermodynamics at 
the Eulerian step (EOS implementation), the deviatoric stress calculations (the strength related 
constitutive equations implementation), and the extra variables update (the inter-phase exchange 
related constitutive equations implementation). 

4.  Modelling and comparison with experiments 
The two-phase porous material model implemented in CTH was first tested using the plane impact set-
up. The plane impact tests and corresponding Hugoniots are well known and the anomalous response 
of a highly porous material is one of the basic tests for a model. The available Hugoniot data for 
highly porous silica (ρ0 = 0.4 g/cm3) [12] demonstrate the clear abnormal response, which is 
summarized in figure 2. Results of the CTH calculations for the shock propagation using the present 
model are presented as a set of density profiles inside the sand sample impacted by a copper flyer plate 
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at velocity U0 (6 set-ups with different U0, the dashed line is the contact interface between the flyer 
plate and the target silica sample). The developed, nearly-stationary, calculated profiles are shown in 
figure 3. These were: 1 – U0 = 0.5 km/s (0.15); 2 – U0 = 1 km/s (0.4); 3 – U0 = 3 km/s (4); 4 – U0 = 5 
km/s (10); 5 – U0 = 7 km/s (20); and 6 – U0 = 9 km/s (35). The corresponding pressure in GPa 
calculated behind the shock front is noted in parenthesis after the velocity value.  
 

  

 
Figure 2. Experimental Hugoniot 
data points for a highly porous 
silica [12], ρ0 = 0.4 g/cm3. 

 Figure 3. Density profiles in highly 
porous silica loaded by the shock 
waves with increasing pressure. 

 
It is seen that the abnormal behaviour is well described by the model. The compaction and heat 

transfer kinetics have been taken from [7,8] with the normal thermo-mechanical characteristics for the 
polycrystalline quartz representing a condensed phase of the two-phase mixture. 

 

Figure 4. CTH calculation of the sand ejecta, loading an aluminium target plate. 
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Dry limestone sand (200 µm average particle size) was used in the present experiments with at least 

96% purity calcium carbonate material and less than 0.3% moisture content. The model [6] applied to 
this material enabled us to conduct CTH calculations of the 2D-set-up in figure 1(c). Several options 
to characterise the strength of the condensed phase are considered. One calculation, using the sintering 
kinetic for the development of strength, plotted at the time marks of table 1 is shown in figure 4 with 
the dark grey region corresponding to detonation products and the light grey area for sand. 

 

 

 

 

 

 

Figure 5. CTH calculations 
with the present model with 
three options for the yield limit 
of the condensed phase. 

 Figure 6. The Sesame model 
calculation, experimental plate 
contours, and comparison of the 
sintering calculation (C) with 
the experiment (E) at t = 540 µs. 

 Figure 7. Vertical 
momentum transfer for 
the present CTH 
calculations and the 
experiment. 

 
The concept of strength is somewhat speculative in porous materials because this property is 

mainly related to the granular material or consolidated compact. The use of the sintering kinetic 
derived from the theory [11] and to be detailed in a further publication is substantiated by comparison 
of the calculated sand ejecta [8] with experiment [5]. It was observed that the calculations [8] with the 
low yield limit (Y) condensed phase of sand describe large depth of burial (DOB) charge tests well 
along with the high-Y calculations for shallow DOB tests. From the analysis of the temperature fields 
inside the ejecta a longer high-temperature effect observed for the shallow DOB case suggests possible 
consolidation, promoting the use of sintering mechanism resulting in a higher strength in the solid 
phase. The argument for using the consolidation kinetic was supported by special tests involving 
explosively loaded sand samples that were encapsulated within two assemblies approximating the 
thermal and pressure loading conditions of the two DOB cases [5,8]. The sand crushing and 
compacting have been confirmed in the corresponding conditions. The present model calculations are 
compared with CTH calculations employing the tabulated Sesame EOS model for Dry Sand [9] with 
the yield limit selected from the best fit of the ejecta shape [5] to the corresponding CTH calculations. 

Thus, the present problem has been calculated with the present model using three yield limit 
descriptions for the condensed phase (low-Y; high-Y; and a variable Y managed by the sintering 
kinetic), and with the Sesame EOS model for Dry Sand. For further analysis, calculated target profiles 
are integrated into a single graph; for example, the ‘Sintering’ graph in figure 5 is composed from the 
target plate profiles taken from figure 4 at the time marks from table 1 and superimposed into a single 
picture. The results are summarized in figure 5 for the present model and in figure 6 for the Sesame 
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model. Figure 6, along with the Sesame EOS calculation, shows a summary of the experimental 
profiles and comparison of the variable-Y calculation (curve C) with the present experiment (curve E) 
at the last time mark of t = 540 µs.  

An important characteristic for this problem, which is of major interest to experimentalists [3,4], is 
the vertical momentum transfer. The vertical displacement data taken from the present calculations are 
summarized in a single graph shown in figure 7. With possible experimental inaccuracies in mind 
shown by intervals in figure 7, it is seen that the best trend to the present experiment is observed for 
the calculation employing the sintering kinetic. 

5.  Discussion and conclusions  
The shape of the sand ejecta can be well described by a variety of models. However, the mass and 
velocity distribution within the ejecta plays an important role in the deposition of momentum onto a 
target. Therefore, the internal mechanisms of the inter-phase exchange, which is generally believed to 
be relevant only for highly porous materials, are very important for the density distribution when 
ejecting soil even with conventional (moderate) porosity. The present calculations have demonstrated 
that taking the inter-phase exchange mechanisms into account might be important for evaluation of the 
momentum transfer. Evolution of strength of the porous material during its explosive consolidation 
and expansion was only superficially considered in the present publication. Further work on target 
effects, analysis of recovered samples and the effects of particle size and shape on the heat exchange 
and compaction kinetics is currently underway. 

Summarising, the plate deformation and the vertical component of momentum deposited to the 
target plate in the present experiments are well described with the two-phase model. Managing the 
yield limit of the condensed phase of the sand through the sintering mechanism improves the 
description, but further study is necessary for evaluation of the material state and strength 
characteristics to be used in the analysis. 
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