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Abstract. Failure of ductile materials is usually expressed in terms of effective plastic strain. 

Ductile materials can fail by two different failure modes, shear failure and tensile failure. 

Under dynamic loading shear failure has to do with shear localization and formation of 

adiabatic shear bands. In these bands plastic strain rate is very high, dissipative heating is 

extensive, and shear strength is lost. Shear localization starts at a certain value of effective 

plastic strain, when thermal softening overcomes strain hardening. Shear failure is therefore 

represented in terms of effective plastic strain. On the other hand, tensile failure comes about 

by void growth under tension. For voids in a tension field there is a threshold state of the 

remote field for which voids grow spontaneously (cavitation), and the material there fails. 

Cavitation depends on the remote field stress components and on the flow stress. In this way 

failure in tension is related to shear strength and to failure in shear. Here we first evaluate the 

cavitation threshold for different remote field situations, using 2D numerical simulations with a 

hydro code. We then use the results to compute examples of rate dependent tension-shear 

failure of a ductile material. 

1. Introduction 

Failure of ductile materials is usually expressed in terms of the effective plastic strain (
p

eff), or in 

terms of a time integral of a function of the effective plastic deformation rate (d
p
eff). There are many 

examples in the literature of such models and their calibration from tests [1-4]. On the other hand it is 

well known that ductile materials may fail by two different failure modes, shear failure and tensile 

failure. Shear failure has to do with shear localization and formation of shear bands. Shear localization 

starts at a certain value of 
p
eff, when thermal softening overcomes strain hardening. It is therefore 

appropriate to express a shear failure criterion in terms of 
p

eff. On the other hand, tensile failure comes 

about through void growth under tension. For a void in a quasi static tension field, there is a level of 

the remote field above which the void may grow spontaneously, and the material there fails. This level 

is the cavitation threshold, which depends on the remote field stress components, and on the local flow 

stress or shear strength. Failure in tension may therefore be related to shear strength and to failure in 

shear. In what follows we: 

 Evaluate the cavitation threshold for different quasi static remote field situations, using 2D 

numerical simulations with a hydro code. 

 Develop a combined tension-shear failure model based on the quasi static cavitation threshold, 

and using an overstress approach. 

 Implement this failure model in a single cell computational tool, and run several examples to 

demonstrate how it works. 
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2. Cavitation threshold 

Based on planar impact spall tests we assume that tensile failure may be caused by spontaneous 

growth of cavities (cavitation) in a tension field. We further assume that micron and sub micron 

cavities always exist in metals. The quasi static growth of a cavity by internal pressure in spherical and 

cylindrical symmetries has been worked out analytically long ago [5]. The similar problem with a 

remote tension field can be worked out in the same way, and the results are almost the same. The 

picture emerging from these solutions is: (1) Cavity growth is a shear strength dependent problem, and 

all its growth features depend on the flow stress, (2) Below a threshold tension Pc the cavity reaches 

equilibrium, and above Pc the cavity grows spontaneously without limit. 

 Beyond the cavitation threshold cavities grow, porosity increases, and at a certain porosity value 

ligaments between cavities fail in shear. The rate of this part of the failure process depends on how 

much the remote tension is above Pc. We assume here that in a dynamic situation this rate is high, and 

that just crossing Pc may signify failure in tension. There is a branch of failure modeling that follows 

void growth beyond Pc to the final failure event, see chapter 7 in [6]. As this part is rather complex, we 

avoid it here by lumping it into a rate dependent damage term, as described later. 

 For non symmetric remote tension there is no analytical solution to the cavitation problem, and we 

resort to computer simulations, using the Lagrange processor of the old commercial hydro code 2D-

PISCES in axial symmetry. The computation sample is a cylinder 20 mm long and of 20 mm diameter. 

At the origin there is a cylindrical pore 2 mm long and of 2 mm diameter. The initial porosity is 

therefore 1/1000, which seems low enough. The material is aluminum with a low value of constant 

flow stress Y=0.2 GPa. On the outer boundary we put a tensile boundary stress, x on the axial 

boundary and r on the radial boundary. We use low values of Y to avoid high stresses near the 

boundaries. Although we use a hydro code, the solution can be considered quasi static, as velocities 

are rather low. We monitor the velocity at the corner of the initial cavity. Generally, when boundary 

stresses are low, the corner velocity first increases and then decreases to zero; but when they are high, 

the corner velocity tends to accelerate. The border between deceleration and acceleration signifies the 

cavitation threshold. 

 It turns out that when the remote boundary stress components are about equal, cavitation threshold 

(relative to Y) is highest. We show the results of all runs in figure 1. 

 

Figure 1. Summary of cavitation threshold results from the 

simulations. 

We see that the remote stress components at the onset of cavitation can be approximated by a single 

curve when plotted by (max/Y) as function of (min/max). We see from figure 1 that: (1) The highest 
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tensile stress at the onset of cavitation is for isotropic tension, and the cavitation threshold decreases as 

the remote stress state is less isotropic, (2) Cavitation may occur as long as the maximal principal 

stress component is positive (tensile), even if the other principal stress components are negative 

(compressive), (3) Cavitation and failure in tension depend on shear strength, and this provides a link 

between failure in tension and failure in shear. 

 Our simulations are 2D and include only two remote principal stress components. It is safe to 

assume that cavitation threshold would depend on all three principal stress components. Evaluation of 

this dependence calls for 3D simulations. 

3. Tension-shear failure model 

From the simulations above we deduce (figure 1) that cavitation threshold can be expressed by: 
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where A and  are curve fitting parameters given in figure 1. The flow stress Y can of course depend 

on pressure, temperature, effective plastic strain, and strain rate, as usual. To demonstrate how the 

model works, we use a single computational cell tool. The cell is a box with dimensions ax, ay, az, all 

initially equal to 1 mm, and we specify the velocities of the box faces that do not go through the origin 

ux, uy, uz. We use ux=10 m/s, and give different values to the other velocity components. To compute 

the rate of change of the average stress deviator components we first compute: 
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where di=deformation rate, i=deformation rate deviator, si=stress deviator, eq=equivalent stress, 

d
p

eff=effective plastic deformation rate, Y=quasi static flow stress, Wp=dissipative plastic work per 

unit mass, and Ap=overstress viscoplastic parameter. Using these relations we get a system of 9 ODEs: 
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where G=shear modulus, and where the partial derivatives are derived from a Gruneisen EOS 

referenced to the shock Hugoniot. We integrate the ODE system with a standard ODE solver. In the 

examples the cavitation (or failure) threshold (f) is given by max of equation (1), and the material is 

aluminum. Figure 2a is for isotropic tension, ux=uy=uz=10 m/s, and figure 2b is for uniaxial strain 

tension uy=uz=0, ux=10 m/s. In both figures we show max(t) relative to f. 

 We see from figure 2a that the tensile stress crosses the failure stress after about 0.5 μs. Had the 

tensile process been slow, this would indicate failure in tension upon crossing. But as this is a dynamic 

process (although not very fast), the state point may go beyond the failure stress (overstress). But after 

it crosses, damage accumulates at a rate that increases with overstress. We haven't switched on 

damage accumulation in this run (see the effect of damage accumulation in figure 4). 

 From figure 2b we see that qualitatively, the result is not much different from that of figure 2a. In 

another run (not shown here) we used uy=uz=-3 m/s, but the overall picture still stayed the same. 

 In all these runs the effective plastic strain upon crossing the cavitation threshold is quite low, 

which is in disagreement with tests used in the literature to calibrate failure models. Recalling that all 

these tests are in uniaxial or plane stress, we transform our single cell equations accordingly, to 

represent uniaxial or plane stress. We use stress free ghost cells outside our computational cell, and 

compute the face velocities by: 

18th APS-SCCM and 24th AIRAPT IOP Publishing
Journal of Physics: Conference Series 500 (2014) 192014 doi:10.1088/1742-6596/500/19/192014

3



 

 

 

 

 

 

    zzzyyy au;au    (4) 

 

This adds two more ODEs to our system. 

  

 

Figure 2. Histories of the tensile stress and the failure stress. 

Figure 2a is for isotropic tension with ux=uy=uz=10 m/s. Figure 2b 

is for uniaxial strain tension with uy=uz=0, ux=10 m/s. 

 

   

 

 

Figure 3. Histories of the maximal tensile stress and the failure 

stress for uniaxial tension with simultaneous failure in shear. 

Figure 3a shows the first 5 μs. Figure 3b shows the last 8 μs. The 

oscillations are an artifact of the way we enforce the uniaxial 

stress state using equation (4). 

 

 In figure 3 we show the result of such a uniaxial stress run. We added to this run failure in shear by 

letting the flow stress decrease linearly to zero between effective plastic strain values of 0.30 and 0.32. 

We see from figure 3 that in a uniaxial stress state the tensile stress does not cross the failure stress. 

Upon failure in shear the tensile failure stress drops, and so does the stress. The oscillations in figure 3 

are an artifact of the way we enforce the uniaxial stress state using equation (4). 

 Upon crossing the cavitation threshold we accumulate damage by: 
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where D=damage, and A, B,  are material parameters. i=any of the stress components, and 

i =additional rates of change of stress components caused by damage. In figure 4 we show results 

of a run as in figure 2a, but including damage accumulation. We use A=1. (GPa*μs)
-1

, B=100./μs, 

=2. 

 

Figure 4. Histories of the tensile stress and the failure stress for 

isotropic tension as in figure 2a, but including damage 

accumulation. 

           95 0  

4. Summary 

Ductile materials can fail in shear and/or in tension, and these two modes of failure are caused by 

different mechanisms. Failure in shear occurs through shear localization and formation of shear bands, 

and results in loss of shear strength. Failure in tension occurs by spontaneous void growth, and results 

in loss of tensile strength and of shear strength. 

 We propose here a combined tension-shear failure model for ductile materials. We identify failure 

in tension as the onset of cavitation (spontaneous void growth) by a remote tension field, and 

determine the cavitation threshold using hydro code simulations with various remote field stress states. 

It turns out that cavitation threshold depends on the flow stress (shear strength), and in this way failure 

in tension becomes coupled to failure in shear. 

 We apply our model in a single cell computational tool. This is a 3D box for which we specify the 

velocities of the faces, and/or the stresses outside these faces, and compute average box values of state 

and kinematic variables. We show several examples of how the model works, and how failure in 

tension and shear may interact. 
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