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Abstract. We describe a simple hydrocode based on a two-step integration scheme that
models the evolution of elastic and plastic strains in crystals subject to rapid laser-shock loading.
By monitoring the elastic strains during plastic flow we track the rotation and spacing of lattice
planes within the polycrystalline sample, and can thus predict the signal that would be produced
by x-ray diffraction in a variety of experimental geometries. By employing a simple Taylor-
Orowan dislocation model we simulate diffraction patterns in a Debye-Scherrer geometry to track
the orthogonal strain states within a laser-shocked sample. The yielding rate is approximately
matched to those observed in multi-million atom molecular dynamics (MD) simulations, allowing
movies to be made of the diffraction images that would be seen in a real experimental geometry,
and illustrating the pertinent experimental requirements, including target texture. Judicious
choice of geometry allows clear demarcation of the initial elastic response of the target to be
made from the subsequent plastic relaxation. We discuss the simulations in the context of
the novel experimental capabilities that have recently become available with the advent of 4th

generation light sources, which allow single-shot diffraction with sub-100-fsec resolution.

1. Introduction
The use of short-pulses of x-rays to interrogate laser-shocked crystals has a long history, with
laser-plasma based x-ray sources first being used both to interrogate the response of single
crystals on nanosecond time-scales [1, 2, 3], and then further developed to allow diffraction in
powder geometry, so that polycrystalline samples could be studied [4, 5]. The majority of these
studies used x-ray sources several hundreds of picoseconds, to several nanoseconds in duration.
However, the advent of 4th generation light sources such as the Linac Coherent Light Source
(LCLS) [6, 7] provides the opportunity to study shocked materials via in situ x-ray diffraction
with unprecedented temporal resolution, as single shot powder diffraction images can be now
obtained with exposures far below 100-fsec, even shorter than the period of the most energetic
phonon in the system.
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We thus now have the capability to perform experiments on the same length and time-scales
as those that pertain to multi-million atom molecular dynamics (MD) simulations [8], and the
post-processing of MD simulations to provide diffraction has been shown to be a productive
method of determining the physical mechanisms that are active at the lattice level during shock
compression [9]. Whilst MD provides the most detailed insight into the physics at the lattice
level, hydrodynamic simulations at the continuum level have the advantage of being extremely
rapid to perform, and thus can quickly provide insight into how lattice deformation will manifest
itself in diffraction images. In this context we present here a simple two-step hydrodynamic
model of the elastic strains present in a micron-scale sample shocked to several tens of GPa
on picosecond time-scales - i.e. precisely the type of conditions that are well-suited to 4th

generation light source studies. Given a plasticity model, the hydrocode predicts the evolution
of the elastic strains within the sample, both along and perpendicular to the shock propagation
direction, and these elastic strains are then used to predict the instantaneous diffraction patterns
in a Debye-Scherrer geometry.

2. Simulation Method
2.1. The Hydrodynamic Equations
Conservation of mass and momentum lead to the well-known equations relating stress along the
(normal) shock direction, σn, the total strain, elastic plus plastic, along the normal direction,
εn = εen + εpn, and the particle velocity, u:
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where ρ0 is the ambient density of the material. Plastic flow is incorporated into a relaxation
function, g(σn, εn), such that(
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where K is the bulk modulus of the material (which we assume is non linear, and a function of
pressure, i.e. K = K0+K1P ), and µ′ is an effective shear modulus. That is to say, if the material
were completely isotropic, one could use the standard shear modulus, but if the target is highly
textured, such that the crystallites within the sample were strongly preferentially oriented along
a particular direction, then this should be taken into account in determining the value of µ′.

A finite value of g gives rise to plastic flow, yet we know that the stresses normal and
transverse to the shock propagation direction are supported by the elastic components of strain,
that is to say
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By imposing a time-dependent stress, σn(z = 0, t) onto a sample, equations 1 to 4 can be solved
to provide the stresses, and the normal and transverse components of the elastic and plastic
strains as a function of depth within the sample, for a given relaxation function.

2.2. The Relaxation Function
For illustrative purposes we outline here perhaps the simplest form of relaxation function due to
Taylor and Orowan [10], which essentially assumes that beyond some threshold stress, dislocation
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multiplication occurs, and plastic flow is mediated by these dislocations that have a velocity that
is a function of the shear stress. We denote the plastic strain by γ = (εpn − εpt )/2, and shear
stress τ = (σn − σt)/2. The plastic strain rate is determined by Orowan’s equation, γ̇ = Nbv,
where N is the number of mobile dislocations, b the magnitude of the burger’s vector, and v
the dislocation velocity. We assume N multiplies due to the shear strain from an intial value
N0, such that N = N0 +αγ. Furthermore, the velocity of the dislocations depends on the shear
stress, asymptoting to the limit v∞ according to v = v∞ exp[−(τ0 + φγ)/τ ], where φ takes into
account work hardening. Taken together, and as shown by Horie [11], the above model results
in a relaxation function given by

g(σn, εn) =

(
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3

){
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Furthermore, we assume that g(σn, εn) = 0 below some threshold stress, which determines the
elastic limit of the material.

2.3. Integration Scheme
A simple two-step method for solving the above equations has been given by Horie and co-
workers [11, 12]. As it is fully described by them, for brevity we simply quote here the final
result. In this method two parallel sets of meshes are used, staggered by ∆z/2, ∆t/2. The total
normal strain at the lagrangian element with spatial index j, and for time-step (n+ 1) is related
to the normal stress by

εn+1
j = εnj + (R2/ρ0)

n∑
m=0

(σmj+1 − 2σmj + σmj−1) (7)

and the stresses are updated by

σn+1
j = σnj +

〈
C2
L

〉
R2

n∑
m=0

(σmj+1 − 2σmj + σmj−1)− 〈g(σ, ε)〉∆t , (8)

where R = ∆t/∆z, ρ0C
2
L = (K + 4µ′/3), and 〈Z〉 = (Zn+1 + Zn)/2. Given the total stresses

and strains along the normal direction, the composite elastic and plastic components can be
deduced using equation 4.

2.4. Simulating Diffraction
The hydrodynamic simulation produces values of the elastic and plastic strains, both normal
and transverse to the shock propagation direction (εen, εet , ε

p
n, εpt ), for each lagrangian element.

We recall that the strain is uniaxial, so that εt = εet + εpt = 0, and that plastic dilatation is zero:
εpn+2εpt = 0, which further implies all volume changes are due to elastic strain: εen+2εet = −∆V/V0
[13]. Importantly, apart from very small shifts due to certain defects such as stacking faults,
x-ray diffraction is only sensitive to elastic strain [14]. Indeed, given compression under unaxial
total strain, this marks out x-ray diffraction as a unique diagnostic, in that a measure of the
elastic strain transverse to the shock propagation direction is effectively also a measurement of
the transverse plastic strain, in that they are by definition then equal and opposite.
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We assume that the shocked target is polycrystalline, and that the x-rays are incident parallel
to the surface normal (the more general solution, where the shock propagation direction and
incident x-rays are non-parallel, is dealt with elsewhere [15]). Most polycrystalline samples
are highly textured, and the texture is a function of the manufacture and processing methods.
Here we assume that the grains within the sample are strongly oriented along a particular
direction (the [111] direction), so that a single value of the effective shear modulus, consisent
with this direction, is appropriate. However, we further assume that the degree of texture is
such that the range of available grain orientations is sufficient that diffraction will occur with
equal probability for both the strained and unstrained samples. In practice, texture maps (pole
plots) of the samples will be required to assess the diffracted intensity as a function of angle if
the sample is very highly oriented.

Consider an arbitrary vector A connecting any two lattice points in real space within the
unperturbed crystal. Under shock deformation of the crystal along the z axis the direction and
magnitude of this vector will change to a value A′ such that

A′ = FA =

(1 + εet) 0 0
0 (1 + εet) 0
0 0 (1 + εen)

A , (9)

and hence A=F−1A′. Now, as reciprocal space is the inverse of real space, it follows that a
reciprocal lattice vector in the undisturbed crystal, G0, is changed by the shock compression to
a value FG′ = G0. Consider diffraction from a particular set of lattice planes in the shocked
crystal, such that the Bragg condition is matched at an angle θB. In the chosen geometry the
system is azimuthally symmetric, so the reciprocal lattice vector can be written in the form
G′ = [sin(2θB), 0, cos(2θB) − 1]. Thus, as G0 ·G0 = (FG′) · (FG′), and denoting the Bragg
angle for the unshocked lattice as θ0, we find

sin4 θB[(1 + εen)2 − (1 + εet)
2] + sin2 θB[(1 + εet)

2] = sin2 θ0 . (10)

Hence, given the elastic strains from the hydrocode, by solving this quartic we can deduce the
angle at which a particular lagrangian element diffracts the x-rays.

It is instructive to consider the results of equation 10 in the limits of purely hydrostatic, and
purely elastic compression. If the crystal yields completely under compression, such that the
hydrostatic limit is attained, then εen = εet , and sin θB(1 + εen) = sin θ0, which for small strains
and angular deviations reduces to a simple differentiation of Bragg’s law: ∆θ = − tan θ0 ε

e
n. In

contrast, if the crystal is compressed along the normal direction elastically, such that there is no
plastic deformation, then εet = 0, and in the limit of small strains we find ∆θ = − sin2 θ0 tan θ0 ε

e
n.

Thus we see that if the original Bragg angle is relatively small, the experimental set-up is far
more sensitive to plastic strain, and this can be used to our advantage to separate the intially
purely elastic response of the crystal on short time-scales from the subsequent plastic flow, as
will be illustrated in the simulations below.

3. Results of Simulations
Multi-million atom MD simulations of shock-compressed copper predict that on very short
(picosecond) time-scales the crystal can withstand extremely high shear stresses before yielding,
leading to elastic strains between 15 and close to 20% [8, 16]. If we assume that the sample is
highly textured, with the peak of the crystallite texture function lying along the [111] direction,
then the peak of the diffraction from [11̄1] will occur if the x-rays are tuned such that θ0 ≈ 19.47◦,
and the scattering angle is twice this (i.e., for copper, an x-ray photon energy of 8.92 keV,
conveniently just below the K-edge at 8.98 keV, such that minimal absorption, and subsequent
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Figure 1. The diffracted x-ray signal as a
function of angle as the strain wave, shown in
figure 2, progresses into the 1-µm thick copper
crystal.
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Figure 2. The strains as a function of depth
within the crystal, where the positive values
correspond to εen, and the negative values to
εpt .

fluorescence, occurs). Note, in an experiment, depending on the degree of texture, one could
tune around this x-ray energy and still obtain good data.

In figures 1 and 2 we show the calculated diffracted intensity and strains within the crystal,
where we have assumed that it has been irradiated by an approximately Gaussian laser pulse,
with FWHM of 80-psec (we have used a separate laser-plasma hydrocode to estimate how the
Gaussian intensity of the laser is converted into a time-dependent stress pulse) [17]. In these
simulations we use values of the bulk moduli, and the effective (directionally dependent) shear
modulus extracted from MD simulations using the Sheng potential [18]. As in the work of
Germann [16], we assume completely elastic response of the material up until a threshold
strain, after which the values of N0 and α have been set such that the plastic strain rate is
approximately 109 s−1. The simulated diffraction profiles take into account not only the strains
calculated according to equation 10, but also the small amount of absorption appropriate to
each lagrangian element as the x-rays traverse, and are scattered within, the 1-µm thick copper
sample. We note that these instantaneous diffraction profiles correspond to those that could be
recorded with an x-ray laser source such as LCLS, as the sub 100-fsec duration x-ray pulse is
shorter than any phonon period: during such a timescale the compression wave advances less
than an interatomic spacing. As the LCLS FEL has a natural bandwidth of order 0.5%, we have
convolved the calculated diffraction profiles with a Gaussian of this bandwidth.

There are several features to note within the simulated diffraction data, and how those
features relate to the time-dependent strain profiles. Firstly, we see that the peak associated with
the unstrained material (found at a scattering angle of 38.94◦) decreases in intensity as expected
as the compression wave traverses the sample, reducing the thickness of the uncompressed
material as it advances. Secondly, over the course of a few tens of picoseconds, a second peak
emerges at a scattering angle of close to 39.7◦. This peak is associated with the large, purely
elastic strain - the scattering angle is relatively small because of the sin2 θ0 factor noted above.
Lastly, after the threshold strain is reached, and plasticity commences, we find scattering at
larger and larger angles (although the elastic strains are lower, the Debye-Scherrer set up is
much more sensitive to the plasticity, as noted above, at these relatively low Bragg angles). We
therefore see that this geometry should allow for discrimination between purely elastic response,
and plastic flow in future experiments.
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4. Summary
In summary, we have presented a simple two-step hydrocode that can be used to solve for
elastic and plastic strains within a laser-shocked sample for a given relaxation model. As
x-ray diffraction is sensitive to the elastic strains, we can deduce the diffraction angles for
monochromatic radiation incident onto a polycrystalline sample in the Debye-Scherrer geometry.
We note that with a judicious choice of low Bragg angles, this geometry has a very different
sensitivity to purely elastic strains, and the elastic strains present during the subsequent plastic
flow. The simulations have been proven to be of direct relevance to laser-driven compression
experiments using on ultra-short timescales that use x-ray diffraction as a diagnostic, such as
those recently performed at LCLS [7].
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