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Abstract. We have carried out several experiments on the Los Alamos proton radiography
(pRad) facility to explore the growth of perturbations subjected to shockless acceleration. These
experiments have involved both Tantalum and depleted Uranium plates with various initial
amplitudes. The experimental platform is based on the one first developed by Barnes et al. [1]
and further advanced by Raevsky [2]. This paper presents both the data for these experiments
and an initial attempt to model the experiments using the simulation code FLAG [3].

1. Introduction

There has long been significant interest in understanding the plastic behavior of solids under
dynamic loading conditions. Various theoretical and computational models have been developed
to explain flow resistance to high strain and strain-rate deformations. The model proposed by
Steinberg and Guinan (SG) [9] assumes a constant strain-rate and is calibrated in the high-rate
regime. The Preston-Tonks-Wallace (PTW) [6] model includes a strain-rate dependence that
is calibrated at low to intermediate rates with experimental data. The model is calibrated to
high strain-rates with a theoretical model while the intermediate regime is interpolated between
the two extremes. Calibration of plastic flow models at intermediate strain and strain-rate have
used various notched bar techniques. Validation has depended on the comparison of simulations
to data obtained using cylindrical impact experiments [5].

Classic fluid instabilities have been used to excite large deformation flow of perturbed
interfaces. The initial classic experiments that examined these flow conditions were conducted
at Los Alamos by Barnes [1]. This data has been used by several efforts to understand
the theoretical behavior of materials with strength [7, 8]. Several recent experiments have
been performed under shock accelerated conditions where a perturbed interface is subjected to
Richtmyer-Meshkov instability [10]. The experiments discussed in this paper are part of a series
that involve the shockless acceleration of solids using an expanding high-explosive detonation gas
[11]. This acceleration results in the metal plate under going classical Rayleigh-Taylor instability.

2. Experimental discussion and results

The experimental set-up for these experiments is shown in figure 1. The target plate is between
1.5 mm for depleted Uranium (DU) to 1.6 mm in Tantalum (Ta). This set-up is based on the
improvements to the experiment design developed by V. A. Raevsky [2]. In this configuration,
a steel plate is accelerated across a gap by a high-explosive plane wave lens. This steel plate
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impacts a booster charge of PBX9501 and ignites the charge. The booster detonates and the
product gas is expanded across a vacuum gap to provide a shockless acceleration of the perturbed
target plate. The accelerated steel plate continues to compress the detonation products and
provides peak pressure at the target surface of around 400 Kbar.

We measure the actual drive on the back surface of the plate using PDV at several radial
locations. In figure 1 we have included an insert that shows the measured drive for a couple of
Ta and DU targets. We use these PDV measures to help calibrate the simulation drive to ensure
we match the acceleration history of the experiment.
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Figure 1. Experimental set-up for perturbed plate experiments. Insert shows the measured
PDV drive at the target center for each of the two Tantalum and depleted Uranium experiments.
Notice that the peak velocities vary slightly; however, the acceleration structure appears
repeatable.

These experiments were conducted on the Los Alamos Proton Radiography (pRad) facility.
This facility allows us to take several images of the evolution on the same experiment. We
collected 19 images for these experiments that were separated by 0.4 us presented in figure 2.
The result shown in figure 5 is an image from an intermediate time and has been processed
using Abel inversion to remove the symmetric overburden. However, for these high-Z targets we
have found that there is a loss of resolution in the central region due to inadequate proton flux
through the target. This loss of resolution makes interpreting the results in the intermediate
times, image 10-13, for the experiment problematic. (This experimental issue does not impact
lower-Z targets such as Copper [11].)

We extract the distance from the tip of the finger to the back of the bubble. It is the bottom of
the bubble that poses the extraction problem at certain times. You can see from the images that
the instability has resulted in significant plastic deformation by the middle of the experiment. In
fact, the perturbations have stretched the target to a width that is significantly thicker then the
original plate. We have done several experiments with Ta using different material processing,
small and large grain. These experiments show no measurable difference between the different
processing.
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Figure 2. Experimental data for the depleted Uranium experiment pRad 352. The images are
the transmission inverse after removing the symmetric overburden, effectively density, separated
by 0.4 ps. The perturbation wavelength is A = 2.0 mm with an initial amplitude, ag = 75 um or
150 um peak to trough. In this image one can see an initial growth phase for the perturbation.
In the intermediate times you observe an obfuscation of the top of the bubble. At late times
one observes a large and rapid instability growth.

3. Theoretical and simulation analysis

We simulated these experiments with the Lagrange-ALE code FLAG [3] using several published
constitutive strength models. We performed a resolution study to ensure we were converged to
the quantity of interest for these experiments, namely the peak-to-trough length. We performed
the simulations by constructing a model with several perturbation wavelengths across the target.
The left and right boundaries were constrained to only move in the direction of the HE drive. The
initial velocity of the steel flyer plate was slightly adjusted so that the simulated PDV velocity
profile at the rear of the target plate matched the experimental data. Figure 3a demonstrates
the close match between the data and the simulation. The pressure drive across the simulation
was uniform as shown by figure 3b where with the exception of the initial peak excursion, both
the finger and bubble interfaces see identical pressure profiles in time.

In figure 4, we show the measured peak-to-trough length as a function of time along with the
results of extracting this length from several simulations. The simulations track the measured
amplitude well for the early time. PTW does appear to match the data more closely then SG as
we approach 3 ps. However, at late time you see the measured amplitude acquire a more rapid
growth rate while the simulations appear to saturate. We are not yet sure how to interpret this
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experimental result.

The simulation shows the maximum temperature of the DU remaining well below possible
melt conditions so it is unlikely that the the material is melting. We have also compared the
simulated material phase space condition with a multiphase Uranium phase diagram to evaluate
a possible solid phase transition but this hypothesis also appears unlikely based on the distance
of the phase boundary to the simulated region. One plausible hypothesis is that the DU may fail
in some manner after a significant amount of plastic strain. This failure mode is not captured
with our current models. This failure mechanism would need to work under a compressive
load as even at late time the HE is sustaining a significant pressure on the target. However,
there are other experiments with extruding DU that are consistent with this finding and which
have not yet been explained with a complete model. In particular, when DU is subjected to
large deformation flow in extrusion experiments the DU appears to become rubble rather then
continuing to have plastic behavior to large deformations [4].

Even though we do not currently have an explanation for the failure, we attempted to model
this type of behavior. We performed a simulation using the PTW model for the initial time of
the simulation. Then at a specified time in the calculation we removed the PTW model and
replaced it with a model that did not have any constitutive flow resistance. This simulation
result is shown in red in figure 4. Our attempts to capture the large growth rate at late times
by turning off flow resistance have not yet yielded satisfactory results and further analysis and
comparison work is necessary.
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Figure 3. Figure (a) shows a comparison of the simulated drive, in blue, with the PDV data,
in red, from the DU experiment pRad 352. In the simulation we adjusted the initial steel plate
velocity slightly to match the back-surface PDV signal. Figure (b) shows the time history of
the pressure just at the HE to target interface at a location in the peak of the finger, red, and
the bottom of the bubble, blue. There is a difference at the initial peak pressure but then the
target appears to have a uniform pressure drive across the simulation.

One interesting observation is that the DU growth data appears to have a behavior that
is beginning to saturate at around 3.6 us just prior to the region of very rapid growth. The
simulation results appear to support a saturation behavior and they begin to oscillate at around
600 um in amplitude. Clearly the instability growth is not arrested at late times in the data.
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However, it is possible that the DU flow resistance is large enough at lower plastic strains that
it should arrest and that there is some other catastrophic failure that leads to the continued,
and increased, instability growth as discussed above.

To understand whether we might expect saturation or continued growth in the presence of a
uniform strength model we have applied the criteria for unstable growth developed by Robinson
and Swegle [8]. We have taken the yield strength from Steinburg [9] and used it to calculate
Sh ~ 4Y h/\/3P,, from [8], where Y is the maximum yield strength, h is the thickness of the
plate and P, is the maximum pressure of the drive. For the conditions of the DU experiment
we have P, = 400 kbar, Y = 16.8 kbar, and h = 1.5 mm leading to éh = 145 pum. This value is
larger than the initial amplitude of 75 um so we would expect the instability to saturate. Both
the simulation and experiment, at early times, appear to saturate as expected; however, the
experiment then undergoes rapid growth which is not yet understood theoretically.

We have conducted similar experiments with Ta using different grain size material. These
experiments have demonstrated no difference in strength behavior under these loading conditions
for the different grain size material. The results of some of these experiments have been
previously published by Barton et al. [12]. Further examination of the data indicates that
there may be a systematic bias in the results that would need more interpretation to fully
address and is not included in the current effort. However, it is clear that at around 5 ps the
amplitude is around 1.5 mm based on comparisons of the amplitude to the wavelength. Further
experiments with Ta would likely be warranted if a detailed quantitative comparison is to be
pursued.

4. Conclusions

We have presented details of Rayleigh-Taylor instability experiments performed on the Los
Alamos National Laboratory pRad facility on DU and Ta. These high-Z materials had a reduced
resolution during the intermediate stage for the evolution due to a lack of proton flux through
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the middle of the target. We presented the results of simulations compared to the DU data.
These simulations show reasonable comparison during the early stages of evolution; however, the
late stage large growth has not yet been reconciled. The distinct behavior in DU which appears
to have two distinct growth rates, one for early time and one for late time, is qualitatively
consistent with DU extrusion experiments performed at LANL. We examined the Ta data and
determined that there is some uncertainty in the analysis which makes quantitative comparison
problematic. If further work were to be performed on Ta using these experiments then additional
data would be required to quantitatively compare to hydro-code calculations.
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