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Abstract. A polycrystalline sample compressed in a diamond anvil cell (DAC) without any 
pressure transmitting medium develops a stress state at the centre of the sample that is axially 
symmetric about the load axis. The axial stress component is larger than the radial component 
and the difference t between the two is taken as a measure of the compressive strength of the 
sample material at a confining pressure that equals the mean normal stress. A proper analysis 
of the diffraction data yields t. The data taken with the radial diffraction geometry, wherein the 
incident x-ray beam is perpendicular to the load axis of the DAC, give reliable estimates of 
strength. The diffraction data obtained with the conventional geometry, wherein the incident x-
ray beam passes parallel to the DAC axis, provide reasonable estimates of strength. However, 
even in this case, reliable strength data can be obtained by combining the measured pressure-
volume data under nonhydrostatic compression and the hydrostat derived from an independent 
source. The determination of strength from high pressure diffraction data is discussed.   

1. Introduction 
The diamond anvil cells (DAC) are routinely used to pressurize polycrystalline samples to a few 
hundred gigapascals (GPa). The x-ray diffraction patterns from the compressed samples give useful 
information on the pressure-volume relation and phase transitions. The stress state of the sample 
compressed in a DAC invariably turns nonhydrostatic. The nonhydrostatic stresses have been 
modelled [1,2] and the equations describing the effect of such stresses on the measured  have 

been derived [1,3–8]. The analyses of  using these equations give information on the volume 
compression produced by the hydrostatic component of stress, compressive strength and single crystal 
elastic moduli under high confining pressure. Full range of information can be obtained only when 

 are measured with special geometry called radial diffraction. The diffraction patterns 
recorded with the commonly used geometry, wherein the incident x-ray beam is parallel to the load 
axis, give limited information. The scope of this paper is limited to the estimation of the compressive 
strength of the sample from the  measured under nonhydrostatic compression. The equations 
required for the analysis and the various diffraction geometries used are discussed. The strengths of a 
few metals, as derived from diffraction data recorded with different geometries, are presented.  
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2. Nonhydrostatic stresses and line shift  
In the experiments conducted for the determination of strength, the polycrystalline solid is compressed 
between the anvils without any pressure medium in order to maximize the nonhydrostatic stresses. As 
the DAC is loaded, the sample is compressed axially and begins to flow radially. At small loads, the 
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sample slips between the anvil surfaces and friction between the sample-anvil interfaces oppose the 
outward flow. At higher loads the slippage stops and the sample begins to shear. When the flow of the 
sample ceases, complex equilibrium stresses are established. One recognizes mean stress over a length 
scale of the order of 5–10 m. These stresses are termed macro-stresses. These stresses produce 
macro-strains that cause diffraction lines to shift. The micro-stresses are related to the second moment 
about the mean of the stress distribution. These produce micro-strains that cause the diffraction lines to 
broaden. In this section we consider only the macro-stresses and its effect on the measured .   )(m hkld

In a well aligned DAC the diamond faces are parallel and the incident x-ray beam passes parallel to 
the load axis at the centre of the anvil face. Noting that the macro-stresses possess axial symmetry 
about the load axis, the stress state at a small area is given by a stress component 33  along the load 

direction and two equal components 11  parallel to the anvil face. The nonhydrostatic stress is given 
by a tensor [1,2], 

 

33

11

11

00

00

00





 ij  = 

3/200

03/0

003/

00

00

00

P

P

P

t

t

t










 = ijDP  (1) 

The P  is the mean normal stress or equivalent hydrostatic pressure and equals 3/)( 331111   . 

, termed deviatoric stress, is a tensor. The term t, often termed differential stress, is given by, ijD

)11( 33  t . Further, it is suggested [2] that Yt , where Y  is the yield strength under the 

confining pressure P . The off-diagonal terms in equation (1) vanish only if the diffraction takes 
place from a small region at the center of the sample. The main factor that causes the off-diagonal 
terms to appear is the diffracted intensity from the regions of stress gradient that progressively 
increases with increasing pressure P . Thus, the off-diagonal terms are small at low pressure in the 
experiments with a well-aligned DAC and incident beam setup, and gradually increases with 
increasing pressure. A complete discussion of this aspect is given elsewhere [9]. 

The equations describing the effect of on for different crystal systems have been 

derived [3, 6–7]. The following equation is general and valid for all crystal systems with the x-ray 
beam incident on the sample in an arbitrary direction   

ijD )(m hkld

  (2) )]()cos31(1)[()( 2
Pm hklQhkldhkld 

The term denotes the d-spacing produced by)(P hkld P , and  is the angle between the load axis of 

the DAC and the diffracting plane normal. The term is given by )(hklQ
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Here  is the diffraction shear modulus. It represents the shear modulus under the 
assumption of stress continuity across the grains averaged only over the crystallites that contribute to 
the diffraction intensity at the point of observation. In a sample with randomly distributed crystallites, 
it represents single crystal shear modulus. denotes the shear modulus of the aggregate under the 

assumption of the strain continuity. The parameter

)(X
R hklG

)V(G

 is a weight factor. In early work its value was 
assumed to lie between 0.5 and 1. In a recent study [9], it has been shown that for the cubic system, 
the relevant value of   depends on the elastic anisotropy factor . 

For , 1
441211 /)(2 SSSx 

1x  and for 1x , 1 . For the cubic system, 
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R hklG  for all crystal systems are given elsewhere [7]. The expression for t can be derived by 

multiplying both sides of equation (2) by the aggregate shear modulus G and expressing G as the 
harmonic mean of G(R) and G(V), G(R) being the aggregate shear modulus under the condition of 
stress continuity across the grains. 
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Noting that , the following expression is obtained for t ]5/)32[()]R([ 44
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The symbol  denotes the average of all observed .  )(hklQ )(hklQ

 BAxf /),(   (5.2) 

 )]}23(2/[5]10/)32{[(  xxxA  (5.3) 

 )}23/()1(5])()1(3[{  xxhklxxB   (5.4) 

The function ),( xf  has been shown in figure (1) for a wide range of x and . Noting that 1  if 

, and 1x 1  if  , it is seen that 1x 1),( xf  for the elastic anisotropy encountered in practice. 

An interesting example is that of niobium [10]. The elastic anisotropy x of niobium changes from 0.5 
at ambient pressure to 0.4 at 40 GPa. The  -value decreases from 2.5 to 1.4 over this pressure range. 
It is shown [10] that 95.0) ,( xf  over the entire pressure range.  

For the crystal systems of lower symmetry, it is not possible to determine the bounds on  , as it 
could be done for the cubic system [9], because the anisotropy factor is not defined by a single 
parameter. For highly anisotropic solids of the hexagonal system such as, beryllium, apatite, beryl, 
muscovite, cancrinite, and many more, computation of ),( xf  using the single crystal elastic moduli 

indicates that for 5.0 , it varies between 0.9 and 1.1. For these reasons, 1),( xf  is assumed to 
be valid for all the crystal systems. The strength t is, therefore, given by 

  )(6 hklQGt  (6) 

Equation (6) is often misinterpreted as an equation based on shear modulus scaling. It is seen that no 
such assumption is made in the derivation of equations (5.1) and (6). Further, G is conventionally 
given by the arithmetic mean of G(R) and G(V). In equation (5), harmonic mean has been used. This 
was done to maintain uniformity with equation (3). For commonly encountered elastic anisotropy x, 
the two means do not differ significantly.   
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If the  can be measured at different , then  can be obtained from equation (2). 

The radial geometry that permits measurement of  at different  is shown in figure (2a) and 
(2b). It is seen that equation (6) requires only the aggregate shear modulus G as an external input. The 
aggregate shear modulus G at high pressure can be obtained using a finite strain equation of the form 

)(m hkld )(hklQ

)(m hkld
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Here, is the aggregate shear modulus at a pressureG P . , and  are the bulk modulus, shear 

modulus and its pressure derivative at ambient pressure, respectively. The volume compression  

at a pressure

0K 0G '
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P  is denoted by y. ,  and  are available from the ultrasonic velocity 
measurements on a single crystal for most solids. 
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Figure 1. Plot ),( xf  as function of x for various  values. 
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Most investigators use the conventional geometry to record the diffraction data. These data can be 

used to determine t. It was pointed out in an earlier study [11] that, at any pressure, the unit cell 
volume measured in presence of nonhydrostatic stresses is overestimated. As a result, there is an offset 
between the hydrostat and the measured equation of state. This offset can be used to estimate t by 
using a relation proposed earlier [4]. This expression is of the form 
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The terms  and  denote the unit cell volumes under nonhydrostatic and hydrostatic pressure, 

respectively. It is to be noted that, unlike equation (2), this method requires two parameters, G and , 

in addition to the measured . 
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For the cubic system, equation (2) suggests [12] that a plot of the lattice parameter , 

measured in presence of nonhydrostatic stresses, versus  is a straight line and t is 
given by 

)(m hkla

)sin31)((3 2  hkl

 )]2/([/3 44121101 SSSMMt    (8) 

The terms  and  are the intercept and slope, respectively, on the  axis, of 

the plot. This plot is termed gamma-plot. Equation (8) with 
0M 1M )sin31)((3 2  hkl

1  is identical with the result of 
equation (12) of Singh and Kennedy [1], an equation found so useful in detecting the onset of 
nonhydrostatic stresses as the pressure of the sample is increased. It is to be noted that this method 
requires single crystal elastic moduli and their pressure derivatives. Additionally, the parameter , a 
parameter with large uncertainty, is also required. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. (a) The radial diffraction geometry [13] with accessible -range . (b) 

Another version of radial geometry (side diffraction) [14-16] is shown with accessible -range 

. This range repeats in remaining three quadrants. The angle  is related to   by 

3600 

90
 coscoscos  .2/. (c) This figure shows the conventional geometry. Here,     
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3. Some examples 
Equation (6) has been used extensively to determine the strength as a function of pressure. A review 
[17] covers the important stress measurement activities prior to 2007. The review of the entire 
literature is beyond the scope of this article. However, it is worth mentioning a few interesting studies 
that have appeared more recently. The estimation of strength of solid argon using radial diffraction 
data suggests that by 40 GPa, it develops strength that is comparable to that of steel at the same 
pressure [18]. Helium under high pressure is a solid that retains fluid-like shear property better than 
any other material and, for this reason, it is used as pressure transmitting medium in experiments with 
DAC.  A study shows that strength of helium is 2 GPa at 100 GPa [19]. Studies on superhard 
ceramics such as BC2N [20] and WB [21] suggest that these solids undergo very high strengthening 
under compression in a DAC. Among the pure metals, osmium has the highest strength that reaches 
nearly 10 GPa at 26 GPa [22]. 

Equation (7) provides an equally reliable method of determining strength under high confining 
pressures. The strength of rhenium has been examined by this method to 250 GPa [23] and to 120 GPa 
[24]. Strength of rhenium has also been measured using the radial diffraction data to 37 GPa [25]. A 
comparison of the results of these studies is given in figure (3). The three sets of data are in good 
agreement in the overlapping pressure region. This agreement shows the equivalence of equations (6) 
and (7). One of the shear moduli  of stishovite phase of silica decreases under pressure and 

vanishes at 50 GPa marking a transition to CaCl2 type structure. The strength across the phase 
transition has been measured using equation (6) [26] and equation (7) [27]. In this case also the results 
of the two studies agree well.  
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Figure 3. A comparison of strength of rhenium from three different studies. 
  

Equation (8) has been used to determine strength in spite of its drawback that it requires single 
crystal elastic compliances and  . As an example, the strength of gold, as determined in several 
studies, are shown in figure (4). The data [28,31] are obtained by using equation (8) while the data [25, 
29] are obtained using equation (6). While the agreement among different sets of data is good, the 
point to be noted is that 5.0  has been used in [28] whereas 1  is used in [31], suggesting that at 
any given pressure, the strength obtained in [28] should be twice that in [31]. The difference between 
the two sets of data is much less. As observed in [9], 1  because  for gold. The two sets of 
data [28,31] below 40 GPa can be brought in to good agreement if  between 0.5 and 1 is chosen. 

1x
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However, same value of  at higher pressure will lead to divergence between the two sets. This would 
suggest a pressure dependent , a trend noticed earlier [10]. Further source of differences among the 
various sets could be the varying degree of purity of the samples used in these studies. However, the 
large scatter in the data arising from the measurement errors makes it difficult to discuss these factors. 

Pressure (GPa)

0 20 40 60

S
tr

e
ng

th
 (

G
P

a
)

0.0

0.5

1.0

1.5

2.0

X X

X
X

X
X X

X X X X
X

X

X

[28]
[25]
[29]
[30]
[31]X

Gold

 
Figure 4. A comparison of strength of gold from different studies. 

 
Table 1. A comparison of tensile strength of a few elements and t at 0 GPa from 
high pressure experiments. Annealed – a. Cold worked – cw. 

Element UTS (GPa) references [32,33] t (GPa) at 0 GPa 

Al 0.11 (a) 0.2 [34 ] 

Au 0.125 (a); 0.22 (cw) 0.15 [25,28–31] 

Ag 0.17 0.18 [35] 

-Fe 0.3 0.5 [36] 

Mo 0.6 0.46 [29 ] 

Pt 0.12–0.17 (a); 0.21–0.24 (cw).  0.21 [37 ] 

Re 1.16 (a); 2.22 (cw) 2.25 [24–26] 

W 2.35 2.4 [38 ] 

 
Table 1 shows that the tensile strength measured in a standard test on bulk specimen are in good 

agreement with the corresponding values derived from the high pressure measurements. A comment 
on the pressure dependence of strength from these studies is in order. Under nonhydrostatic 
compression the sample undergoes plastic deformation (strain or work hardening) and grain size 
reduction. Both these factors contribute to increase in strength [39–41]. In metals such as rhenium, 
work hardening is a major factor that contributes to the strength. In brittle materials like ceramics, it is 
the grain size reduction that accounts for the rapid increase of strength-pressure data. For these 
reasons, the increase in strength with pressure derived from x-ray data is expected to be higher than 
that under hydrostatic pressure. 
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