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Abstract. The understanding of wave propagation phenomena requires use of robust numerical 

models. 3D finite element (FE) models are generally prohibitively time consuming. However, 

advances in computing processor speed and memory allow them to be more and more 

competitive. In this context, EDF R&D developed the 3D version of the well-validated FE 

code ATHENA2D. The code is dedicated to the simulation of wave propagation in all kinds of 

elastic media and in particular, heterogeneous and anisotropic materials like welds. It is based 

on solving elastodynamic equations in the calculation zone expressed in terms of stress and 

particle velocities. The particularity of the code relies on the fact that the discretization of the 

calculation domain uses a Cartesian regular 3D mesh while the defect of complex geometry 

can be described using a separate (2D) mesh using the fictitious domains method. This allows 

combining the rapidity of regular meshes computation with the capability of modelling 

arbitrary shaped defects. Furthermore, the calculation domain is discretized with a quasi-

explicit time evolution scheme. Thereby only local linear systems of small size have to be 

solved. The final step to reduce the computation time relies on the fact that ATHENA3D has 

been parallelized and adapted to the use of HPC resources. In this paper, the validation of the 

3D FE model is discussed. A cross-validation of ATHENA 3D and CIVA is proposed for 

several inspection configurations. The performances in terms of calculation time are also 

presented in the cases of both local computer and computation cluster use. 

1. Introduction

For obvious safety reasons, maintenance and In-service inspection is of great importance for nuclear 

power plants operators like EDF. Ultrasonic techniques are in particular very useful to detect and size 

potential flaws localized in depth in the metallic components. In these techniques, the detection is 

mostly based on amplitude criterion of the reflected signal from the defect. But, in some cases, due to 

unfavorable wave to microstructure interaction, the performances of the control can decrease 

significantly [1, 2]. Furthermore, the use of one NDT method for onsite nuclear inspection is 

conditioned by a qualification procedure which has to demonstrate the performances of the chosen 

technique. In this context, modeling codes can be of a great interest since they allow parametric 

studies [3] and avoid providing expensive mock-up. However, a good accuracy of the numerical 

results necessitates the taking into account of all physical phenomena involved in the wave 

propagation in polycrystalline media. In particular Finite Element (FE) codes have proved their 

efficiency to accurately reproduce complex phenomena such as beam deviation, division or attenuation 

[4-7]. During the past decade, EDF R&D developed in collaboration with INRIA the FE code 

ATHENA2D dedicated to the solving of the elastodynamics equations in all kind of elastic media [4, 

8-10]. This code has already been widely used in order to simulate complex inspection configurations 

and is consequently relatively well documented. Nevertheless, up to now, only the 2D version of the 

code was available since an important amount of inspection configurations can be approximated by 2D 

models and 3D finite element (FE) models were generally considered to be prohibitively time 

consuming. But, in some cases, 3D simulations are required. However, the advances in computing 
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processor speed and memory allow them to be more and more competitive and lead EDF R&D to 

develop the 3D version of the ATHENA code.  

In this paper, the main characteristics of the code as well as the chosen numerical scheme are 

described. The performances in terms of calculation time are also presented in the cases of both local 

computer and calculation cluster use. We then present some cross-code validation configurations 

between the FE code ATHENA and the semi-analytical code CIVA. 2. Mathematical model 

ATHENA is a finite element code that simulates wave propagation in all kind of elastic media by 

solving the elastodynamic equations expressed in a mixed formulation combining stress and velocity 

terms (σ and v respectively).  

Equations (1) and (2) are solved on a 2D or 3D calculation domain Ω whose boundary is ∂Ω and 

respects condition (3). Furthermore, a defect Γ can be included inside Ω as long as the free surface 

boundary condition (4) is satisfied. The particularity of the code relies on the fact that the interaction 

between the beam and the defect is simulated using the fictitious domains method. In this case, the 

defect is discretized with a triangular mesh (in the 3D case, with segments in the 2D case) independent 

of the 3D Cartesian mesh of Ω and allows arbitrary shape and orientation of the defect [11, 12]. 

 

(1) ρ ∂v/∂t – divσ = f, 

(2) A ∂σ/∂t – ε(v) =0  on Ω, 

    

 

(3) σ.n =0 on ∂Ω 

(4) σ.n =0 on Γ 

 

where, v is the velocity in Ω, σ is the stress tensor, εi,j (v) = ½( vi,j + vj,i), A = C 
–1, 
with C the elasticity 

tensor and ρ is the density. 

In addition, ATHENA gives the possibility to use perfectly matched absorbing layers (PML) to 

define the boundaries of the calculation domain in order to avoid parasite reflections on the artificial 

edges of the calculation zone and allow simulation in infinite domains.  

3. Numerical Scheme

The discretization of (1) and (2) using of an appropriate variational formulation leads to the following 

numerical scheme: 
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The notation V
n   
is used to represent V at time step n*dt. The above-written equations introduce a new 

quantity Λ, which is a Lagrange multiplier used to ensure the boundary condition (4). Mass matrices 

Mv and Ms depend respectively on the quantities ρ and A seen above and are block diagonal making 

the numerical scheme quasi-explicit. Matrix B is a discrete divergence operator and D is “trace 

operator” of the defect mesh on the domain mesh. Concerning the time discretization, we can notice 

that σ and V are not computed at the same time, (5) and (6) belongs to the class of “leap-frog” 

schemes.  

4. Space discretization

The calculation domain Ω where equations (5) to (7) are solved is limited to rectangular surfaces in the 

2D case and to rectangular parallelepipeds in the 3D case so that a regular Cartesian mesh is used for 

the discretization. The computation of V is performed in the middle of the cells (plane-rectangular or 
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cubes) while σ is calculated at the nodes. However we do not compute one value of σ at each node. 

The choice of the finite elements leads to discontinuities at each cell for the different components of 

tensor σ. Indeed if we consider the 3D case: on one hand, σxy is continuous in both directions x and y, 

and discontinuous in direction z. On the other hand σzz is only continuous in direction z. So we have to 

compute 18 stress degrees of freedom on each node. We only have to solve a small system of 18 

equations on each node, which is less time consuming than a global implicit system which would be a 

21*Nx*Ny*Nz matrix. 

As the mesh is regular, the stability of the explicit scheme can be easily ensured with h = Vp* dt, 

with Vp being the longitudinal velocity, dt the time step and h the mesh size.  

The additional unknowns Λ, introduced by the fictitious domains method on every nodes of the 

defect mesh, can be obtained by solving a linear system at each time step. The order of the 

corresponding matrix is the number N of nodes of the defect mesh. Furthermore this matrix is constant 

and factorized once before the transient calculus.  

 

5. Parallelization

Even if ATHENA does not deal with a global linear system of equations, the computation time of 3D 

configurations can become prohibitive in a local computer. In order to increase the competiveness of 

the code, it has been parallelized using the send/receive mechanism of the well-documented MPI 

(Message Passing Interface) library. In the parallelized version of ATHENA, the domain Ω is divided 

along Z axis in np chunks of size Nz/np, where np is the number of processors used. Two processors, 

in charge of two subdomains, can then communicate, sending and receiving data belonging to their 

common boundary (Figure 1). Furthermore, one can notice that there is no limitation for the defect due 

to parallelization since the defect can belong to more than one subdomain. 

Figure 1. Communication scheme of two processors in Athena3d parallelization. 

6. Computation time performances

According to the sizes of problems, ATHENA3D can be run on different kinds of computers. Small 

size problems can run on local machines. Indeed the development of multi-cores processors gives the 

possibility to take advantage of parallelization with 8 or 12 processors on local computers. However, 

for bigger size problems, the use of a calculation cluster becomes necessary. Table 1 summarized the 

computing times obtained on different machines for three different test cases with regard to their main 

numerical characteristics (number of cells, number of time steps and mesh size). However, it only 

gives an assessment of computing resources needed, and are not “best effort” performance times 

obtained by optimization.  

The test cases are the followings: 

- Case 1 corresponds to the inspection of a 10mm high notch located at 20 mm depth in stainless steel 

with a 0.2 mm mesh size 

- Case 2 corresponds to the inspection of a 0.6 mm diameter SDH located at 30 mm depth in stainless 

steel and a mesh size of 0.08mm. 

- Case 3 is similar to case 2 but with a 0.04mm mesh size 

The local computer used for the time performances evaluation includes two Intel processors 

(Nehalem type, frequency: 2.3 GHz), with 12 Gbytes of memory. Eight cores are then available on this 

computer. 
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The cluster used in this study contained about 2000 computing nodes. Each node includes two Intel 

“Westmere” processors (frequency: 2.8 GHz), providing 12 cores and exhibits 24 Gbytes of memory. 

On such a node parallel computing can be run with 12 processes on 12 cores. 

Table 1. Different calculation times of ATHENA3D 

Number of cells Number of time 

step 

Mesh size 

(mm) 

Time calculation 

Local computer 

Time calculation 

cluster 

Case1 4 10
6
 735 0.2 20 minutes - 

Case2 75 10
6
 3215 0.08 ~18 H 9 Hours 

Case3 200 10
6
 5700 0.04 - 30 H 

 

The mesh size of case 1 is 0.2 mm which is a common value for 2 MHz longitudinal wave. As a 

consequence, the number of cells is limited enough to allow a local calculation of the inspection 

configuration. In this study, Case 1 was calculated using the 8 cores available on the local machine.  

For Case 2, the use of the calculation cluster decreases the computation time by a factor of two. 

However, the calculation was launched on only one node of the cluster, so the 9 hours of computing 

time were obtained with a limited 12 cores parallelization. It means that the computation could have 

been run on a bigger amount of cores implying a decrease of the computing time. 

Case 3 needed a big amount of memory such as the calculation could not be run on a local 

machine. Furthermore, for the cluster calculation, the domain Ω had to be divided into 24 subdomains, 

each one needing an entire computing node, and, as a result, used only one of the 12 cores. This is a 

“memory driven” case. Finally a 200 million cells calculation has been calculated in 30h. 

Nevertheless, it has to be noted that the computation time performances were evaluated for a 

configuration with only one Ascan, i.e. one position of the UT probe. When an entire Bscan must be 

simulated, the use of the calculation cluster allows a more than substantial gain of time since each 

Ascan can be launched simultaneously while they have to be calculated sequentially in a local 

machine.  

7. Athena pre/post processing

The utilization of ATHENA is simplified by the integrated Graphical User Interface (GUI): 

MILENAQt (Figure 2). It helps the user to create the simulation configuration, i.e. the calculation 

domain, defect shape and size, probe characteristics, etc., through the existence of various menus and 

submenus guiding the user step by step. Furthermore, it includes a preprocessing stage consisting in an 

automatic meshing of the defect and calculation domain and the computation of the source field using 

the probe characteristics defined by the user. Finally, MILENAQt integrates the post-processing and 

the visualization of the results (Figure 3).  
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(a) 

(b) (c) 

Figure 2. Illustration of the GUI MilenaQt. (a) shows the visualization of the inspection configuration: two SDH 

and a linear phased array probe. (b) shows the dialog box dedicated to the definition of the inspected object 

(propagation media and defects). (c) shows the dialog box dedicated to definition of the transducer parameters.  

Figure 3. Example of beam visualization with MilenaQt. 

SDH1 

SDH2 

Calculation 

zone 

Probe 
Propagation 

medium 
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8. Test configurations in a homogeneous and isotropic medium

In this study, three validation cases were scrutinized. In each case, the propagation medium made of 

austenitic stainless steel is isotropic and homogeneous (VL= 5 700 m/s, VS= 3130 m/s and its density is 

d=7.9). 

The first configuration involved the detection of two side drilled holes (SDH) located at 10 and 20 

mm depth with a 1.5 mm diameter. Four different single element 2MHz probes were simulated. Their 

characteristics are summarized in Table 2. An example of configuration is given Figure 4.  

The amplitudes of the SDH echoes obtained with ATHENA3D were compared with the ones 

derived from CIVA10 simulations performed with the same inspection description. The results are 

summarized in Table 3. The amplitude of the 10 mm depth SDH was used as the reference.  

Table 3 shows a good agreement between the two codes. Indeed, except for the fL55 law for whom 

the discrepancy is 1.5 dB, the differences between ATHENA3D and CIVA 10 are inferior to 0.5 dB. 

Furthermore, the focalization effects are correctly taking into account such as the amplitude of the 20 

mm depth increases significantly when using the appropriate focal law (fL0 case). In addition, Figure 

5 shows the fields obtained for the two focalized probes for both ATHENA3D and CIVA 10. They 

exhibit very similar properties and in particular, they provide the same focusing depths.  

Table 2. Characteristics of the probes used for the first validation case 

Probe Element shape 

Propagation angle 

in austenitic steel 

(°) 

Inspection type 

L0 Cylindrical 

R= 6mm 
0 

Contact  (wedge 5mm high) 

Plane L wave 

L55 Cylindrical 

R= 6mm 
55 

Contact (wedge 15mm high) 

Plane L wave 

fL0 
Spherical 

Curvature radius = 150 mm 

R= 20 mm 

0 

Immersion (water height =50 mm) 

Focused L wave (focalization depth = 

22 mm) 

fL55 
Spherical 

Curvature radius = 150 mm 

R= 20 mm 

55 

Immersion (water height =50 mm) 

Focused L wave (focalization depth = 

12 mm) 

 
Figure 4. Inspection configuration of a 1.5 mm diameter of SDH located at 10 mm depth with a focused mono-

element probe at the propagation angle of 55°.  
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Table 3. Amplitudes of the 20 mm depth SDH echo normalized by the 10 mm depth SDH obtained with 

ATHENA3D and CIVA 10 

L0 (dB) L55 (dB) fL0 (dB) fL55 (dB) 

ATHENA3D -1.5 -6.0 +15.0 -4.0 

CIVA 10 -1.5 -6.0 +15.5 -2.5 

Figure 5. Sound field for the fL0 and fL55 calculated using CIVA 10 (left) and ATHENA3D (right). 

The second configuration corresponds to the detection of a 10 mm height notch with a TRL55 

probe (separate transmitter/receiver probe, longitudinal wave at 55° of incidence and 2MHz central 

frequency). The inspection configuration is given Figure 6. The Bscan obtained using ATHENA3D 

(25 scans with 1 mm step) can be observed on Figure 7. The main expected phenomena are clearly 

visible: the diffraction, the corner and the LLT mode conversion echoes are present. As for the 

previous configuration, the amplitudes of these echoes were compared to those computed using 

CIVA10. The results are summarized in Table 4. Again, a good agreement between CIVA and 

ATHENA was observed since the discrepancy between the two models is inferior to 2 dB.  

Figure 6. Inspection of a 20 mm high notch with a TRL probe (incidence angle of 55°) 

22 mm 

22 mm 

12 mm 
13 mm 

Shear wave Longitudinal 

wave 

Shear wave 

Longitudinal 

wave 

Calculation zone 
Notch 
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Figure 7. Bscan corresponding to the inspection of a notch with a TRL probe. The diffraction, corner and mode 

conversion echoes are clearly visible.  

Table 4. Amplitude of the main echoes coming from the notch inspection. The reference is a 1.5 mm diameter 

SDH located at a 30 mm depth 

Corner (dB) Diffraction (dB) LLT (dB) 

ATHENA3D 3.0 -6.0 13.5 

CIVA 10 2.5 -8.0 11.5 

The third configuration concerns the use of a linear phased array (PA) probe for the detection of 1.5 

mm diameter SDHs. A 32 elements linear probe is simulated. Its properties are described in Table 5. 

The inspection configuration is illustrated Figure 8. Three focal laws were tested: L0 plane wave, L0 

with a 10 mm focusing depth (0F10) and L0 with a 20 mm focusing depth (0F20).  

 
Table 5. Properties of the simulated linear phased array 

Central frequency Element size Array pitch Number of element 

2 MHz 0.3x15 mm² 0.5 mm 32 

Figure 8. Inspection configuration of 2 SDH using a linear PA probe 

The sound fields simulated for the 0F10 and 0F20 laws using CIVA 10 and ATHENA are given 

Figure 9 and Figure 10. In both cases, the focal laws are clearly taken into account. Furthermore, the 

two codes give similar results in terms of focal depth. 

Diffraction echo 

Corner echo 

Mode conversion 

LLT echo 

Linear PA probe 

SDH 

Calculation 

Zone 
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Figure 9. Sound field calculated using ATHENA3D (left) and CIVA 10 (right) for the 0F10 focal law 

Figure 10. Sound field calculated using ATHENA3D (left) and CIVA 10 (right) for the 0F20 focal law 

 

Concerning the detection of the SDHs, the amplitude of the 20 mm depth SDH obtained for the 3 

focal laws and the 2 codes are summarized in Table 6. The discrepancy between the two remains 

inferior to 2 dB which is a satisfactory result in terms of cross-code validation.  

Table 6. Amplitude (dB) of the SDH located at 20 mm depth. The reference is the amplitude of the 10 mm depth 

SDH measured with the focal law 0F10. 

Plane Wave 0F10 0F20 

ATHENA 3D -10.0 -7.5 -1.5 

CIVA 10 -11.5 -8.5 -3.5 

9. Anisotropic medium

A preliminary test has been realized to verify the capacity of the ATHENA3D code to take into 

account beam deviation when it propagates in an anisotropic (but homogeneous) medium. In this 

configuration, the simulated medium exhibits a density of 7 and transversally isotropic elastic 

properties (Table 7) and the probe provides a longitudinal wave with no incidence angle (L0). We 

want to evaluate the influence of the orientation of the principal symmetry axis on the beam 

propagation. To do so, three different cases are tested. In the first one, the symmetry axis is parallel to 

the propagation axis (z). In the second case, the symmetry axis undergoes a 15° rotation around the y-

axis. In the third case, the symmetry axis is rotated by 15° around the x-axis (Figure 11).  

For the three cases, the simulated sound field on an observation plane located at a 30 mm depth 

from the entry surface is given in Figure 12.  The results are in very good agreement with the theory of 

ultrasound propagation in anisotropic media. Indeed, in the first case, no deviation is observed while in 

the second and third cases, an 8.5 mm deviation along the x axis and y axis (respectively) appears.  
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Table 7. Elastic properties of the transversally isotropic austenitic stainless steel used for the simulation 

C
11

C
22

C
33

C
44

C
55

C
66

C
12

C
13

C
23

247 247 218 105 105 80 105 148 148 

Figure 11. Computation configuration for the 3 orientations of the symmetry axis (Fiber orientation) of the medium 

Figure 12. sound field calculated at the observation plane using ATHENA 3D 

when the symmetry axis is a) parallel to z, b) rotated around the y axis and c) 

rotated around the x axis 

10. Conclusion

In the present paper, the new version of the ATHENA code is presented. It allows 3D finite element 

calculation and is optimized for parallelized computation. Consequently, in numerous configurations, 

the use of such a code is no more prohibitively time consuming when launching the computation on a 

calculation cluster.  

8.5 mm 

8.5 mm 
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Furthermore, the first validations cases detailed in this work showed that the ATHENA code was 

able to reproduce both wave propagation and wave to defect interaction in isotropic and homogeneous 

media. In addition, various kinds of ultrasonic probes (single and multi-element probes, immersion, 

contact, plane wave, focalized wave, etc.) can be handled by ATHENA through the use of its GUI 

MILENAQt.  

However, this validation work must be continued. Indeed, simulation of Distance-Amplitude Curve 

(DAC) covering a wide range of depth is needed in order to quantitatively define the validation 

domain of the code. Furthermore, in this study, the comparison between the sound fields obtained 

from CIVA 10 and ATHENA 3D was only based on the determination of the focal depth. 

Consequently, a more exhaustive comparison of the sound fields providing by each code should be of 

great interest.  

Finally, even if a preliminary result obtained in an anisotropic homogeneous medium has been 

shown in this paper, it is necessary to perform simulation on heterogeneous structures such as 

austenitic welds.  
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