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Abstract. We investigate long-range effects of the dipolar interaction in Bose-Einstein
condensates by solving the time-dependent 3D Gross-Pitaevskii equation. We study the
propagation of excitations between non-overlapping condensates when a collective mode is
excited in one of the condensates. We obtain the frequency shifts due to the long-range character
of the dipolar coupling for the bilayer and also the trilayer system when the dipolar mode is
excited in one condensate. The propagation of the monopolar and quadrupolar modes are also
investigated. The coupled-pendulum model is proposed to qualitatively explain the long range
effects of the dipolar coupling.

1. Introduction

Recent experiments on dipolar Bose-Einstein Condensates (dBECs) of chromium [1],
dysprosium [2], and erbium atoms [3], have stimulated a growing interest in ultracold dipolar
quantum gases [4] due to the long-range and anisotropic nature of such interaction. The research
on this kind of interaction is expecting to give rise to important new features not only at
microscopic level, but at macroscopic level as well. The development of new experimental
techniques focused on the realization of molecular gases with large electric polar moment, where
the dipolar effects are particularly strong, has led to the hope that challenging new frontiers in
this field can be opened.

The theoretical research in dipolar gases has tended to focus mostly on the study of the
anisotropic effects of the dipolar interaction [4, 5], rather than on the long-range ones, where
there are only few proposals: cat states in triple-well potentials [6, 7], collisions between
solitons in dual-core couplers [8] and propagation of center-of-mass modes studied by means
of a variational method [9, 10].

The effect of the dipole-dipole interaction on the frequency of a collective mode has been
experimentally measured in a single dBEC [11]. However, a central issue that remains opened
is to understand the mechanism of the expansion and propagation of collective modes between
non-overlapping condensates.

The aim of the present work is to study the propagation of dipolar, monopolar and
quadrupolar modes induced by the long-range nature of the dipolar interaction by solving the full
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3D time-dependent Gross-Pitaevskii equation (TDGPE). We consider two dipolar Bose-Einstein
condensates harmonically trapped in a double-well configuration such that the overlap between
the two clouds is negligible as well as the corresponding tunneling effect. The only effective force
acting between the two dBECs is the one produced by the long-range behaviour of the dipolar
interaction.

First, we study the propagation of center-of-mass (dipolar) modes between two non-
overlapping pancake-shaped condensates. Our time-dependent numerical results are in
agreement with previous ones obtained within the variational method [9, 10]. Then, we
investigate the propagation of other excitations (monopolar and quadrupolar modes), in the
bilayer system. That is, the appearance and shift of new characteristic frequencies. Finally, as
an extension, we test our model in a triple-well configuration, comparing the results with the
case of the double-well configuration, and finding out that the classical model gives a qualitative
description of the dipolar coupling. The coupled-pendulum model is used to understand
qualitatively the results obtained before.

2. The system: dipolar interaction in BECs and double-well configuration

Bose-Einstein condensates at low temperatures can be described in the mean-field framework
provided a large number of particles and a weakly interacting system. The TDGPE in presence
of the dipolar interaction reads:

ih̄
∂Ψ(~r, t)

∂t
=

[
− h̄2

2m
∇2 + Vext(~r) + g|Ψ(~r, t)|2 + VD(~r)

]
Ψ(~r, t) , (1)

where Ψ(~r, t) is the wavefunction of the condensate, which is normalized to the number of
particles N =

∫
|Ψ(~r, t)|2d~r, m is the mass of the bosons, and Vext(~r) is the trapping potential.

The contact interaction potential is characterized by the coupling constant g = 4πh̄2a/m, where
a is the s-wave scattering length. The mean-field dipolar interaction is given by

VD(|~r − ~r ′|, θ) = d2
1− 3 cos2 θ

|~r − ~r ′|3
. (2)

Here ~d =
√
µ0/4π ~µm, where µ0 is the magnetic permeability of vacuum and ~µm is the magnetic

dipole moment of the atoms. All the atoms are assumed to have the same dipole moment, both
in magnitude and orientation given a polarization direction. The angle θ is the angle between
the magnetization axis and the relative position between two dipols. We can see from Eq. (2)
that in contrast to contact interaction, the dipolar interaction is anisotropic, due to the term
cos2 θ, and long-range, due to the 1/|~r − ~r ′|3 dependence.

In this work, we consider a bilayer system confined in the following double well potential:

Vext(x, y, z) =
1

2
m
(
ω2
⊥ (y2 + z2) + ω2

xmin[(x+ xc)
2, (x− xc)2]

)
. (3)

The shape of each single dBEC depends on the trapping frequencies ω⊥ and ωx. The distance
between the two dBECs is given by L = 2xc. In the numerical calculation we have used
the following parameters: 2xc = 3µm, m = 52 uma (52Cr atoms) , total number of particles
N = 5000 (2500 bosons in each dBEC), and trapping frequencies ωx = 1500 × 2π Hz � ω⊥ =
50 × 2π Hz. Thus, each dBEC has a pancake-shaped geometry (Fig. 1). The oscillator length
in the x direction that gives a longitudinal length scale is: lx =

√
h̄/mω2

x = 23.21nm. The
scattering length choosed for the particles is a = 0.001 aB, where aB is the Bohr radius.
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The two condensates are non-overlapping, that is, the barrier height is large enough to avoid
the tunneling of particles. But they must be close enough in order to analyze the long-range
properties of the interaction since it decays as 1/|~r − ~r ′|3. Finally, the dipole moments are
aligned in the x-direction, parallel to the symmetry axis of the pancakes. This corresponds to
the attractive configuration (the repulsive configuration would imply the dipoles to be oriented
in the plane of the pancake shaped condensate). The purpose of this choice is to ensure, first,
the stability of the condensate [4] (cigar-shaped geometry brings earlier to the collapse than the
pancake-shaped), and second, other dipole moment orientations would decrease dipolar effects.

Figure 1. Illustration of the double-well configuration. The dipole moments are oriented in the
x-direction, perpendicular to the pancake-shaped dBECs.

3. The coupled-pendulum model

Before presenting the numerical simulations, a qualitative description of the propagation of a
collective mode between two non-overlapping dBECs can be found in the frame of classical
mechanics [9]. We consider the classical analogy of two-coupled pendulums, where the natural
oscillation frequency of each pendulum (ω0) corresponds to the frequency of the excited mode,
and the coupling string α corresponds to the dipolar coupling. The two natural modes of
oscillation are:

ωin = ω0 (4)

ωout = ω0

√
1 + 2α/ω2

0 , (5)

which are the in-phase mode and the out-of-phase mode, respectively. In the dipolar drag effect
when the center-of-mass mode is excited, ωin is the frequency of the trap in the direction of the
initial displacement (Kohn’s theorem).

The parameter α, depends on the dipole moment ~µm, the distance between the two
condensates 2xc and their density gradient. Whereas the first two parameters are easily tunable,
the latter is more difficult to control (in spite of the fact that it can be changed by varying all
the parameters). Therefore, these two parameters and the frequency of the excited mode will
detune the shift of the out-of-phase mode frequency ωout [9].

The previous result can be generalized to n coupled pendulums. The eigenvalues of the
problem are:

ωev = ω0

√
1 + (2 + γ)α/ω2

0 . (6)
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And the parameter γ can be found by solving the following equation [12]:

(1 + γ)2ξ(γ, n− 2)− 2(1 + γ)ξ(γ, n− 3) + ξ(γ, n− 4) = 0 , (7)

where

ξ(γ, n) = (−1)n
sinh((n+ 1)Ω(γ))

sinh Ω(γ)
, with Ω(γ) = arccosh(−γ

2
) . (8)

4. Numerical results

A nice long range effect that can be realized in a bilayer configuration is the dipolar drag. It is
well known, that when the center of mass mode (dipole mode) is excited in a single BEC confined
in a harmonic trap (by displacing the condensate out of its equilibrium position and releasing
it, or giving some velocity to the center of mass of the condensate), the condensate oscillates
harmonically with the same frequency as the characteristic trap frequency in the direction of the
initial perturbation. This is still true in presence of long-range interactions that is for a dipolar
Bose-Einstein condensate in a harmonic potential. However, when the dipole mode is excited
in one dBEC of a bilayer system, although there is no tunneling between both condensates, the
center of mass of the other dBEC starts to oscillate, as a result of the long-range character of
the dipolar interaction, and both the in-phase and the out-of-phase dipole modes of the bilayer
system are excited. Whereas the in-phase mode (center of mass) is independent of the dipolar
interaction, the frequency of the out-of-phase mode depends on it. Dipolar drag is one of the
so called propagation of collective modes, produced by the long-range nature of the dipolar
interaction. It has been already studied in electron gases in uniform bilayer systems, under the
name of Coulomb drag [13, 14].

4.1. Dipolar drag effect

In order to observe the dipolar drag effect one has to take into account the following items:

• The perturbation that produces the dipolar excitation must be in a transversal direction of
the pancake-shaped dBEC, because the confinement in the longitudinal direction (ωx) is so
tight that leads to a small frequency shift, see Eq. (5). Here we excite the center of mass
mode of the left condensate along y-direction.

• The dipole orientation shall be in the x-direction (attractive configuration between the two
layers), otherwise, the dipolar interaction favors the interaction between the atoms of the
same condensate rather than the coupling with the other condensate.

Taking into account the above considerations we have studied the dipolar drag effect by
solving the TDGPE. The numerical procedure has three steps:

(i) By using the imaginary time step method, we find the stationary solution to reach the
ground state of the system, which has the form Ψ(~r, t) = ΨGS(~r) exp(−iεt/h̄), where ε is
the chemical potential.

(ii) Then, we add a momentum to the wavefunction of the left condensate displacing it out of
its ground state, with the transformation (in the region x < 0):

Ψ(~r, 0)→ ΨGS(~r) eiλ y , (9)

where λ quantifies the magnitude of the perturbation. We remind that the kick must be in
a transversal direction of the pancake, where the BEC is less confined.
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Figure 2. Left: Diplacement of the center of mass of the left (top) and right (bottom)
condensate with the value of d/µB = 10, where µB is the Bohr magneton. Right: Fourier
transform (logarithmic scale) of the displacement of the center of mass of both condensates.
The first peak corresponds to ωin = ω⊥ = 50 Hz × 2π = 314.16 Hz, whereas the second one is
ωout = 1.14ω⊥ = 358.14 Hz. The strength is plotted in arbitrary units.

(iii) The excited new wavefunction is evolved in time by solving Eq.(1) using Runge-Kutta and
Hamming’s method (predictor-modifier-corrector) [15].

In Fig. 2 we show the displacements of the centers of mass of both condensates and the
corresponding Fourier analysis [16]. One can see that the right dBEC starts to oscillate due
to the dipolar coupling. The beating of the oscillations comes from the presence of the two
normal modes of the coupled system. The frequencies are obtained by Fourier analysis, the
lower frequency corresponds to the in-phase mode (4) and the second peak is the out-of-phase
mode which is slightly shifted from the excitation frequency ω⊥ (5).
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Figure 3. Displacement of the center of mass of the condensate of the right for different dipole
moments. From top to bottom, d = 10µB, d = 6µB and d = 1µB.

We can analyse now the dependence of the frequency shift on the dipole moment and the
distance between the condensates. On the one hand, in Fig. 3, we show the displacement of
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the center of mass of the right dBEC for different values of d: the frequency shift is larger
and the time response is smaller when the dipole moment increases. We have used the values:
d/µB = 1; 6 and 10. On the other hand, in Fig. 4, we plot the frequency shift for several values
of L, showing the decreasing of the shift when the dBECs get away. When they approach, a
change of the potential behaviour occurs because they start to see the structure of dipols of the
pancake-shaped condensates.
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Figure 4. Frequency shift of the center of mass mode as a function of the relative distance of
the bilayer system. The line shows the potential decay at large distances.

4.2. Other excitations

As an extension, we have studied the propagation of other collective excitations in the
same system (for d = 10µB), in particular, the monopolar excitation (breathing mode) and
quadrupolar ones (2x2 − y2 − z2, yz, xy).

In order to get a good approximation of the frequency of a collective mode for a single dBEC,
one can use the following equations obtained for contact interaction [17, 18]:

ω2(m = 0) = ω2
⊥

(
2 +

3

2
β2 ∓ 1

2

√
9β4 − 16β2 + 16

)
(10)

ω2(m = ±l) = l ω2
⊥ (11)

ω2(m = ±(l − 1)) = (l − 1)ω2
⊥ + ω2

x , (12)

where β = ωx/ω⊥ is the anisotropy of the BEC (in our case β = 30), l = 1 for center-of-mass
modes, and l = 2 for quadrupolar ones. The case m = 0 refers the monopolar mode, which has
to be dealed separatedly. Since we consider a pancake-shaped condensate with large β, we will
see that not all these frequencies will be excited in our simulations neither even all these modes
are totally decoupled.

4.2.1. Monopolar excitations. As regards the monopolar excitation, when β � 1, from (10)
there are two frequencies with m = 0: ω1 =

√
10/3ω⊥ ≈ 1.83ω⊥ and ω2 =

√
3ωx .
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Although these results have been obtained for contact interaction, in presence of dipolar
interaction, the values are slightly shifted [4, 11]. To quantify this shift, we have studied the
monopolar response of a single dBEC with β = 30, by solving the TDGPE and we have found
ω1 = 1.9ω0.

Now we study the propagation of the monopolar excitation between two non-overlapping
dBECs. The perturbation corresponding to the monopolar excitation (breathing mode) is the
following one (only applied on the left condensate):

Ψ(~r, 0)→ ΨGS(~r) eiλ(x
2+y2+z2) . (13)

Evolving this wavefunction in time by solving the TDGPE, we find similar results to the dipolar
drag case, but with different frequencies (Fig. 5). In other words, only the low-lying energy
frequency (ω1) and its corresponding shifted frequency are excited. In comparison with the
dipolar drag effect, the magnitude of the shift in both cases is similar. Therefore, we see one
frequency at ω = 1.9ω⊥ and its corresponding shifted frequency, showing that the coupled-
pendulum model can be extended also for monopolar modes.

4.2.2. Quadrupolar excitations. The frequencies corresponding to quadrupolar excitations in a
pure contact interacting BEC are (11,12): ω1 =

√
2ω⊥ and ω2 = ωx . Three kind of quadrupolar

excitations are implemented in the perturbation of the wavefunction, 2x2− y2− z2 (also known
as quadrupolar), xy and yz respectively:

Ψ(~r, 0) → ΨGS(~r) eiλ(2x
2−y2−z2) (14)

Ψ(~r, 0) → ΨGS(~r) eiλ x y (15)

Ψ(~r, 0) → ΨGS(~r) eiλ y z . (16)

Looking at the results of the time evolution (Fig. 5), those of the 2x2 − y2 − z2 excitation
leads to a surprise, owing to the fact that it is shockingly similar to the results obtained for
monopolar excitations. The reason for this similarity is that in a pancake geometry, with large
β, the quadrupolar excitation degenerates to the monopolar one because the x-component of
the perturbation gets almost inhibited due to the strong confinement. The frequencies obtained
are the same for both cases.

Monopolar x2 + y2 + z2 ωin = 1.89ω⊥ ωout = 2.11ω⊥
−2x2 + y2 + z2 ωin = 1.89ω⊥ ωout = 2.11ω⊥

Quadrupolar xy ωin ≈ ωx ωout = ωin
yz ωin = 1.45ω⊥ ωout = 1.58ω⊥

Table 1. Table that presents for the monopolar and each quadrupolar excitation the shape of
the excitation and the value of the in-phase and the out-of-phase frequency found out in the
Fourier transform.

In contrast, it is not the case for the xy and yz excitation, as can be seen in Fig. 5. The former
excites only the ω2 = ωx frequency, whereas the latter excites ω1 = 1.45ω⊥, and a second shifted
frequency. The responsible of these differences is the kind of excitation. The xy excitation only
has one term, which depends on x. It means that the relevant frequency in the trap will be ωx.
However, since the dBEC is tightly confined in the x-direction, the corresponding shift due to
the dipolar coupling cannot be resolved.
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Figure 5. Fourier transform of the monopolar and quadrupolar responses (2x2 − y2 − z2, xy
and yz). The strength is in logarithmic scale and arbitrary units.

As regards the yz excitation, since the perturbation does not affect the x-direction, the
frequency excited will be that of lower energy. In the numerical results we obtain one peak in
the spectrum at ω1 = 1.45ω⊥, and, in addition, a second frequency due to the dipolar interaction
will appear in this case because the frequency of the trap in the transversal direction is small.

By symmetry and geometry, xz excitation is analogous to the xy excitation, and y2− z2 will
be also analogous to the yz excitation. In a pancake geometry, one can recover one or the other
simply rotating the coordinate system.

5. Dipolar drag effect in a triple-well configuration

Let us extend the dipolar drag effect to the case, of a triple-well trap. Some studies have been
carried out in triple-well configurations related with dipolar effects [19], phase diagrams [6] or
symmetry breaking [7]. In the classical analogy of three coupled-pendulums (6-8), the eigenvalues

of the problem are: ωin = ω⊥, ωout,1 = ω⊥
√

1 + α/ω2
⊥ and ωout,2 = ω⊥

√
1 + 3α/ω2

⊥.

In Fig. 6, we show the displacements of the centers of mass when only the left condensate
is perturbed. All three frequencies appear in the movement, and, as a consequence, the
displacements of the centers of mass have a more complex behaviour.

Although there are three eigenmodes, it is possible to excite only two frequencies by choosing
the appropiate initial conditions. If we perturb only the condensate of the center, looking to
the eigenvectors of the problem, only the two frequencies that preserve the symmetry of the
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system, ωin and ωout,2, will appear in the movement of the center of mass (the other frequency
corresponds to a non-symmetric mode).
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Figure 7. Displacements of the centers of mass of the three different condensates in the triple-
well configuration, when we perturb only the center condensate. From top to bottom, condensate
of the left, center and right.

In Fig. 7, we present the numerical results obtained by solving the TDGPE exciting only the
center of mass mode of the centered dBEC. As expected, only two frequencies are involved in
the movement of the three non-overlapping condensates. We have obtained the corresponding
frequencies by performing a Fourier analysis and we have compared them with the case of only
two dBECs:

(ω2
out,2 − ω2

⊥)3well

(ω2
out − ω2

⊥)2well
≈ 1.6 . (17)
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It is very close to the value of the ratio 1.5 obtained in the classical analogy. This means that
the classical coupled-pendulum model yields a qualitative description of the dipolar coupling
between few non-overlapping dBECs. Another remarkable fact is that, indeed, the magnitude
of the shift is increased for three condensates compared with the case of two.

6. Summary and conclusions

In the present work, the full TDGPE has been numerically solved to study the long-range
character of the dipolar interaction. We have investigated the propagation of collective modes,
such as dipolar and quadrupolar excitations, between non-overlapping pancake-shaped dBECs.
A classical coupled-pendulum model has been proposed.

We have analyzed the effect of different parameters in the propagation of the excitations.
The dipole moment enhances the dipolar effects, whereas the enlargement of the scattering
length and the distance between condensates leads the system to be dominated by the contact
interaction which hides the desired long-range effects.
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