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Abstract. We examine the superfluid-Mott insulator (SF-MI) transition of antiferromagnetically 
interacting spin-1 bosons trapped in a square or triangular optical lattice. We perform a strong- 
coupling expansion up to the third order in the transfer integral t between the nearest-neighbor 
lattices. As expected from previous studies, an MI phase with an even number of bosons is 
considerably more stable against the SF phase than it is with an odd number of bosons. Results for 
the triangular lattice are similar to those for the square lattice, which suggests that the lattice 
geometry does not strongly affect the stability of the MI phase against the SF phase.

1. Introduction

The development of optical lattice systems based on laser technology has renewed

interest in strongly correlated lattice systems. One of the most striking phenomena

of the optical-lattice systems is the superfluid-Mott insulator (SF-MI) phase transition;

the SF phase (i.e., the coherent-matter-wave phase) emerges when the kinetic energy is

larger enough compared with the on-site repulsive interaction. Otherwise, the MI phase,

i.e., the number-state phase without coherence emerges. The low-lying excitations of

these optical-lattice systems can be described by using the Bose–Hubbard model. The

temperature of trapped-atom systems can be extremely low, and hence, we hereafter

assume the ground states of the system.
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Spin degrees of freedom also play an important role in optical-lattice systems. In

theory, lots of analytical and numerical studies have been performed for the spin-1

Bose–Hubbard model [1], including rigorous results for a finite system [2]. In the case

of antiferromagnetic spin-spin interactions, the perturbative mean-field approximation

(PMFA) [3] indicates that when filling with an even number of bosons, the MI phase is

considerably more stable against the SF phase than when filling with an odd number

of bosons. This conjecture has been found by density matrix renormalization group

(DMRG) [4] and quantum Monte Carlo (QMC) methods [5, 6] in one dimension (1D).

Recently, QMC methods also confirmed that conjecture in a two-dimensional (2D)

square lattice [8].

Another interesting property of the spin-1 Bose–Hubbard model with antiferromag-

netic interactions is the first-order phase transition: the SF-MI phase transition is of

the first order in a part of the SF-MI phase diagram. The first-order transition has

also been studied by using the variational Monte Carlo [7] and QMC [8] methods in a

2D square lattice. The QMC results indicate that the phase transition can be of the

first order, which is consistent with mean-field (MF) analysis [9, 10, 11]. However, the

first-order transition disappears for strong antiferromagnetic interactions; a MF calcu-

lation similar to that of Ref. [9] and the QMC study [8] show that the first-order SF-MI

transition from the Mott lobe with two bosons per site disappears when U2/U0 ≥ 0.32

and U2/U0 ≥ 0.15, respectively. Thus, we assume strong interactions where the SF-MI

transition is of the second order.

For the second-order SF-MI transition, the strong-coupling expansion of kinetic

energy [12] is excellent for obtaining the phase boundary. This method has been applied

to the spinless [12, 13], extended [14], hardcore [15], and two-species models [16], and the

results agree well with QMC results [13, 15]. Thus, in this study, we perform the strong-

coupling expansion with the spin-1 Bose–Hubbard model. In another publication [17],

we examined the case of hypercubic lattices. In this study, we examine the triangular

lattice and compare the results with those of a square lattice to clarify whether the

lattice structure plays a key role for the SF-MI transition. The triangular lattice is

intriguing because it frustrates the spin systems or spinful Fermi systems.

The rest of this paper is organized as follows: Section II briefly introduces the

spin-1 Bose–Hubbard model and the strong-coupling expansion. Section III provides

our results. A summary of the results is given in Section IV. Some long equations that

result from the strong-coupling expansion are summarized in Appendix A.

2. Spin-1 Bose–Hubbard model and strong coupling expansion

The spin-1 Bose–Hubbard model is given by H = H0 +H1, where

H0 = − t
∑

⟨i,j⟩,α
(a†iαajα + aj

†
αaiα),
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H1 = − µ
∑
i,α

a†iαaiα +
1

2
U0

∑
i,α,β

a†iαa
†
iβaiβaiα

+
1

2
U2

∑
i,α,β,γ,δ

a†iαa
†
iγFαβ · Fγδaiδaiβ.

=
∑
i

[
− µn̂i +

1

2
U0n̂i(n̂i − 1) +

1

2
U2(Ŝ

2
i − 2n̂i)

]
. (1)

Here, µ and t(> 0) are the chemical potential and the hopping matrix element,

respectively. U0 (U2) is the spin-independent (spin-dependent) interaction between

bosons. We assume repulsive (U0 > 0) and antiferromagnetic (U2 > 0) interaction.

aiα (a†iα) annihilates (creates) a boson at site i with spin-magnetic quantum number

α = 1, 0,−1. n̂i ≡ ∑
α niα (niα ≡ a†iαaiα) is the number operator at site i. Ŝi ≡∑

α,β a
†
iαFαβaiβ is the spin operator at site i, where Fαβ represents the spin-1 matrices.

In this study, we assume a tight-binding model with only nearest-neighbor hopping and

⟨i, j⟩ expresses sets of adjacent sites i and j.

When t → 0, the ground state is the MI phase with the lowest interaction energy.

The number n0 of bosons per site is odd when U0(n0 − 1) < µ < U0n0 − 2U2, whereas

it is even when U0(n0 − 1) − 2U2 < µ < U0n0. The MI phase with an even number of

bosons is

Ψeven =
∏
k

|n0, 0, 0⟩k. (2)

Here, |n0, 0, 0⟩k implies the boson number n0, the spin magnitude S = 0, and the spin

magnetic quantum number Sz = 0 at site k. However, for the MI phase with an odd

number of bosons per site, we define a nematic state with Sz = 0:

Ψodd =
∏
k

|n0, 1, 0⟩k (3)

because we assume antiferromagnetic interactions. The dimerized state is degenerate

with Ψodd for t = 0 and is considered to be the ground state for finite t in 1D. Therefore,

the results based on Ψodd are basically limited to 2D or larger dimensions.

Next, we define the defect states by doping an extra particle or hole into Ψeven and

Ψodd as follows:

Ψpart
even =

1√
N

∑
i

[
|n0 + 1, 1, 0⟩i ⊗

∏
k ̸=i

|n0, 0, 0⟩k
]
, (4)

Ψev
hole

en = √1
N i

[
|n0 − 1, 1, 0⟩i ⊗

k ̸=i

|n0, 0, 0⟩k
∑ ∏ ]

, (5)

Ψpart
odd = √1

N

∑
i

[
|n0 + 1, 0, 0⟩i ⊗

∏
k ̸=i

|n0, 1, 0⟩k
]
, (6)
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Ψhole
odd =

1√
N

∑
i

[
|n0 − 1, 0, 0⟩i ⊗

∏
k ̸=i

|n0, 1, 0⟩k
]
. (7)

Here, N is the number of lattice sites. We assume that these defect states can be

regarded as the SF states doped with infinitesimal numbers of particles or holes. By

applying the Rayleigh–Schrödinger perturbation theory to these MI and defect states,

we obtain the energy of the MI state and that of the defect states up to the third order

in t.

3. Results

The results for the energy per site of the MI state and of defect states in the square

lattice are summarized in Appendix A. The phase can be determined by these energies.

Specifically, if EMI(n0, µ, t) > (<)min
(
Epart

def (n0, µ, t), E
hole
def (n0, µ, t)

)
, then the phase

is SF (MI), where EMI(n0, µ, t) is the energy of the MI state and Epart
def (n0, µ, t)

[Ehole
def (n0, µ, t)] is the energy of the defect state with one extra particle (hole). The

SF–MI phase boundary is thus determined by

EMI(n0, µ, t) = Epart
def (n0, µ, t) (8)

or

EMI(n0, µ, t) = Ehole
def (n0, µ, t). (9)

Figures 1 and 2 show the phase diagram obtained from the strong-coupling

expansion for the square lattice and for the triangular lattice, respectively. In both

lattices, the MI phase for even-boson filling is considerably more stable against the SF

phase than for odd-boson filling, which is consistent with QMC studies for the square

lattice and MF studies. The area of the MI phase for even-boson (odd-boson) filling

increases more (decreases more) for U2/U0 = 0.4 than for U2/U0 = 0.2. The convergence

of the strong-coupling expansion from the first to the third order in t is fairly good. We

also find that higher-order terms mostly render the SF phase more stable against the

MI phase because the area of the MI phase mostly becomes smaller for higher-order

expansions, which is similar to the case of spinless Bose–Hubbard model.

The phase-boundary curve obtained by the strong-coupling expansion up to the

third order in t has a cusp at the peak of the Mott lobe. However, the chemical potential

in infinite order in t should follow a power-law scaling near tC, which is the value of t

at the tip of the Mott lobe. Following Ref. [12] to the spinless Bose–Hubbard model in

2D, we perform a chemical-potential fitting method which assumes

µ = A(t)±B(t)(tC − t)zν . (10)
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Figure 1. (Color online) Phase diagrams obtained by strong-coupling expansion for (a) U2/U0 = 0.2

and for (b) U2/U0 = 0.4 in the square lattice. The solid curves show the results up to third order in

t. Results up to first order (second order) in t are also shown by the green dashed (blue dot-dashed)

curve.
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Figure 2. (Color online) Same plot as in Fig. 1 but for (a) U2/U0 = 0.2 and (b) U2/U0 = 0.4 in the

triangular lattice.
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Figure 3. (Color Online) Phase diagrams for (a) U2/U0 = 0.2 and for (b) U2/U0 = 0.4 obtained by

the strong-coupling expansion (solid curve) and its chemical-potential fitting (brown dashed curve) in

the square lattice. The red dot-dashed curve shows the PMFA results.

with a critical exponent zν ≃ 2/3. Here A(t) ≈ a+bt+ct2+dt3 and B(t) ≈ α+βt+γt2

are the regular polynomial functions of t. By using our strong-coupling expansion

up to the third order in t, we immediately determine a, b, c, and d by setting

A(t) = [µpart(t)+µhole(t)]/2. In order to determine α, β, γ, and tC we compare the Taylor

expansion of t in B(t)(tC − t)zν with [µpart(t) − µhole(t)]/2. Figures 3 and 4 compare

the phase-boundary curves obtained by the third-order strong-coupling expansion with

those obtained by the chemical-potential fitting in the square lattice and in the triangular

lattice, respectively. The chemical-potential fitting makes the phase-boundary curves

smooth and natural, as expected. The results obtained by the PMFA are also presented

in both figures.

For the square lattice, the QMC data show, for the n0 = 2 Mott lobe, tC/U0 ≃
0.09(0.13) when U2/U0 = 0.25(0.5) (as per our interpretation of Fig. 15 of Ref.

[8]). Our third-order strong-coupling results and the chemical-potential fitting show

tC/U0 = 0.132(0.187) when U2/U0 = 0.25(0.5) and tC/U0 = 0.114(0.151) when

U2/U0 = 0.25(0.5), respectively. This shows that the chemical-potential fitting clearly

improves the results obtained by the strong-coupling expansion up to third order in t. On

the other hand, tC/U0 = 0.084(0.113) is obtained by the PMFA when U2/U0 = 0.25(0.5).

Hence the results obtained by QMC methods are in between those obtained by the

chemical-potential fitting and PMFA, at least in the case of the square lattice where

QMC has been performed. This seems to reflect the fact that the PMFA includes a part

of the infinite-order terms in t but neglects the quantum fluctuations that possibly

stabilize the MI phase, whereas the chemical-potential fitting based on the strong-

coupling expansion up to third order in t includes the quantum fluctuations but does
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Figure 4. (Color online) Same plot as in Fig. 3 but for (a) U2/U0 = 0.2 and (b) U2/U0 = 0.2 in the

triangular lattice.

not directly include the higher-order terms in t that possibly stabilize the SF phase.

Comparing the results obtained in the square lattice and those obtained in the

triangular lattice, we find that tC is roughly 6/4 = 3/2 times greater in the square

lattice than that in the triangular lattice, because of the difference between the number

of nearest-neighbor sites z [z = 4(6) in the square (triangular) lattice]. However, there

seems to be no significant qualitative difference between the results obtained in the

square lattice and those obtained in the triangular lattice. These results suggest that

there the SF-MI transition has no significant dependence on the lattice structure.

4. Summary

In this paper, we present the strong-coupling expansion for the spin-1 Bose–Hubbard

model for the square and triangular lattices. In both lattices, we confirm that for filling

with an even number of bosons, the MI phase is considerably more stable against the

SF phase than for filling with an odd number of bosons. We also fit the phase-boundary

curves obtained by the strong-coupling expansion to the scaling form of the curves by

using the chemical-potential fitting method. The fitting curves smooth and natural as

expected, and the values of tC are clearly improved.

Overall, there has been no essential difference in the phase boundary curves for the

square and triangular lattices. This might be due to our assumption that the zeroth

order in t MI state is a nematic state. However, QMC study [8] of the square lattice

indicates that the magnetic structure factor shows no trace of magnetic order anywhere

in the phase diagram. Thus, in contrast to the usual antiferromagnetic spin systems,

there might be no significant dependence on the lattice structure for spin-1 bosons in
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S two or more dimensions.
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4.1. Appendices

Appendix A. Energies of Mott insulator and defect states in square and

triangular lattices

By using Ψeven and Ψodd [Eqs. (2) and (3)], the energy per site of the MI state in the

square lattice is

Esquare,MI,even(n0)

N
=

U0

2
n0(n0 − 1)− U2n0 − n0µ− zst

2

3

n0(n0 + 3)

U0 + 2U2

, (A.1)

Esquare,MI,odd(n0)

N
=

U0

2
n0(n0 − 1)− U2(n0 − 1)− n0µ

− 1

9
zst

2
[34
25

(n0 + 4)(n0 − 1)

U0 + 4U2

+
4

5

2n2
0 + 6n0 + 7

U0 + U2

+
(n0 + 1)(n0 + 2)

U0 − 2U2

]
(A.2)

up to the third order in t, and where zs = 4 is the number of nearest-neighbor sites in

the square lattice. The corresponding MI-state energy in the triangular lattice is

Etriangular,MI,even(n0)

N

=
U0

2
n0(n0 − 1)− U2n0 − n0µ− ztt

2

3

n0(n0 + 3)

U0 + 2U2

− 2

9
ztt

3n0(n0 + 3)(2n0 + 3)

(U0 + 2U2)2
, (A.3)

Etriangular,MI,odd(n0)

N

=
U0

2
n0(n0 − 1)− U2(n0 − 1)− n0µ

− 1

9
ztt

2
[34
25

(n0 − 1)(n0 + 4)

U0 + 4U2

+
4

5

2n2
0 + 6n0 + 7

U0 + U2

+
(n0 + 1)(n0 + 2)

U0 − 2U2

]
− 2

27
ztt

3
[118
125

(n0 − 1)(n0 + 4)(2n0 + 3)

(U0 + 4U2)2
+

32

25

(n0 − 1)(n0 + 4)(2n0 + 3)

(U0 + 4U2)(U0 + U2)

+
4

25

(n2
0 − 1)(9n0 + 1) + (n0 + 2)(n0 + 4)(9n0 + 26)

(U0 + U2)2

+
8

5

(n0 + 1)(n0 + 2)(2n0 + 3)

(U0 + U2)(U0 − 2U2)
+

(n0 + 1)(n0 + 2)(2n0 + 3)

(U0 − 2U2)2

]
(A.4)

up to the third order in t, and where zt = 6 is the number of nearest-neighbor sites in

the triangular lattice. Up to the second order in t, the expressions for the MI energy
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is the same for both lattices except for the difference between zs and zt. However, in

contrast to the square lattice, the third-order terms in t exist for the triangular lattice.

The energies of the defect states can be obtained by using Ψpart
even, Ψ

hole
even, Ψ

part
odd , and

Ψhole
odd [Eqs. (4)–(7)] up to the third order in t. For the square lattice, we obtain

Epart
square,def,even(n0)− Esquare,MI,even(n0)

= U0n− µ− zst
n0 + 3

3

− zs(zs − 7)t2

9

n0(n0 + 3)

U0 + 2U2

− zst
2n0

9

[
2
( n0 + 5

2U0 + 3U2

+
n0 + 3

3U2

)
+

n0 + 2

2U0

]
− zst

3

27
n0(n0 + 3)

{
(zs − 1)

[(2n0 + 3)zs − 3(3n0 + 8)

(U0 + 2U2)2

+
2

U0 + 2U2

(
2

n0 + 5

2U0 + 3U2

+
n0 + 2

2U0

)
+

4(n0 + 3)

3U2(U0 + 2U2)

]
− zs

[
2
( n0 + 5

(2U0 + 3U2)2
+

n0 + 3

(3U2)2

)
+

n0 + 2

(2U0)2

]
+

4

3U2

(1
5

n0 + 5

2U0 + 3U2

+
n0 + 2

2U0

)}
, (A.5)

Ehole
square,def,even(n0)− Esquare,MI,even(n0)

= − U0(n0 − 1) + 2U2 + µ− zst
n0

3

− zs(zs − 7)t2

9

n0(n0 + 3)

U0 + 2U2

− zst
2(n0 + 3)

9

[
2
( n0 − 2

2U0 + 3U2

+
n0

3U2

)
+

n0 + 1

2U0

]
− zst

3

27
n0(n0 + 3)

{
(zs − 1)

[(2n0 + 3)zs − 3(3n0 + 1)

(U0 + 2U2)2

+
2

U0 + 2U2

(
2

n0 − 2

2U0 + 3U2

+
n0 + 1

2U0

)
+

4n0

3U2(U0 + 2U2)

]
− zs

[
2
( n0 − 2

(2U0 + 3U2)2
+

n0

(3U2)2

)
+

n0 + 1

(2U0)2

]
+

4

3U2

(1
5

n0 − 2

2U0 + 3U2

+
n0 + 1

2U0

)}
, (A.6)

Epart
square,def,odd(n0)− Esquare,MI,odd(n0)

= U0n0 − 2U2 − zst
n0 + 1

3
− µ

− zs(zs − 3)t2

9
(n0 + 1)

[ n0 + 2

U0 − 2U2

+
4

5

n0 − 1

U0 + U2

]
− zst

2

9
(n0 + 4)

[
2

n0 − 1

2U0 + 3U2

+
n0 + 2

2U0

− 68

25

n0 − 1

U0 + 4U2

− 8

5

n0 + 2

U0 + U2

]
− 2

45
zs(2zs + 3)t2

(n0 + 1)(n0 + 4)

3U2

− zs(zs − 1)t3

27

(n0 + 1)(n0 + 2)

(U0 − 2U2)2
[(2n0 + 3)zs − (5n0 + 6)]

− 4

675
zs(zs − 1)t3

n0 + 1

(U0 + U2)2
[(n0 − 1)(9n0 + 1)zs − 2(17n2

0 + 26n0 + 32)]

− zs(zs − 1)2t3

27

n0 + 1

U0 + U2

[32
25

(n0 − 1)(n0 + 4)

U0 + 4U2

+
8

5

(n0 + 2)(2n0 + 3)

U0 − 2U2

]
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− 2

27
zs(zs − 1)t3(n0 + 1)(n0 + 4)

{ n0 − 1

2U0 + 3U2

[34
25

1

U0 + 4U2

+
4

5

1

U0 + U2

]
+

n0 + 2

2U0

[ 1

U0 − 2U2

+
4

5

1

U0 + U2

]
+

1

3U2

[ 2

25
(8zs + 9)

n0 − 1

U0 + 4U2

+
4

5
zs

n0 + 2

U0 + U2

]}
− 4

135
zs(2zs + 3)t3

(n0 + 1)(n0 + 4)

3U2

[1
5

n0 − 1

2U0 + 3U2

+
n0 + 2

2U0

]
+

2

675
zst

3 (n0 + 1)(n0 + 4)

(3U2)2
[2(n0 − 11)z2s + 9(3n0 + 7)zs − 9(n0 + 4)]

+
zst

3

27
(n0 + 1)(n0 + 4)

[68
25

(zs − 1)
n0 − 1

(U0 + 4U2)2

+ 2zs
n0 − 1

(2U0 + 3U2)2
+ zs

n0 + 2

(2U0)2

]
, (A.7)

Ehole
square,def,odd(n0)− Esquare,MI,odd(n0)

= − U0(n0 − 1)− zst
n0 + 2

3
+ µ

− zs(zs − 3)t2

9
(n0 + 2)

[ n0 + 1

U0 − 2U2

+
4

5

n0 + 4

U0 + U2

]
− zst

2

9
(n0 − 1)

[
2

n0 + 4

2U0 + 3U2

+
n0 + 1

2U0

− 68

25

n0 + 4

U0 + 4U2

− 8

5

n0 + 1

U0 + U2

]
− 2

45
zs(2zs + 3)t2

(n0 − 1)(n0 + 2)

3U2

− zs(zs − 1)t3

27

(n0 + 1)(n0 + 2)

(U0 − 2U2)2
[(2n0 + 3)zs − (5n0 + 9)]

− 4

675
zs(zs − 1)t3

n0 + 2

(U0 + U2)2
[(n0 + 4)(9n0 + 26)zs − 2(17n2

0 + 76n0 + 107)]

− zs(zs − 1)2t3

27

n0 + 2

U0 + U2

[32
25

(n0 − 1)(n0 + 4)

U0 + 4U2

+
8

5

(n0 + 1)(2n0 + 3)

U0 − 2U2

]
− 2

27
zs(zs − 1)t3(n0 − 1)(n0 + 2)

{ n0 + 4

2U0 + 3U2

[34
25

1

U0 + 4U2

+
4

5

1

U0 + U2

]
+

n0 + 1

2U0

[ 1

U0 − 2U2

+
4

5

1

U0 + U2

]
+

1

3U2

[ 2

25
(8zs + 9)

n0 + 4

U0 + 4U2

+
4

5
zs

n0 + 1

U0 + U2

]}
− 4

135
zs(2zs + 3)t3

(n0 − 1)(n0 + 2)

3U2

[1
5

n0 + 4

2U0 + 3U2

+
n0 + 1

2U0

]
+

2

675
zst

3 (n0 − 1)(n0 + 2)

(3U2)2
[2(n0 + 14)z2s + 9(3n0 + 2)zs − 9(n0 − 1)]

+
zst

3

27
(n0 − 1)(n0 + 2)

[68
25

(zs − 1)
n0 + 4

(U0 + 4U2)2

+ 2zs
n0 + 4

(2U0 + 3U2)2
+ zs

n0 + 1

(2U0)2

]
. (A.8)

For the triangular lattice, we obtain

Epart
triangular,def,even(n0)− Etriangular,MI,even(n0)

= U0n− µ− ztt
n0 + 3

3
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− zt(zt − 7)t2

9

n0(n0 + 3)

U0 + 2U2

− ztt
2n0

9

[
2
( n0 + 5

2U0 + 3U2

+
n0 + 3

3U2

)
+

n0 + 2

2U0

]
− ztt

3

27
n0

{ n0 + 3

(U0 + 2U2)2
[(2n0 + 3)z2t − 2(4n0 + 9)zt − 3(17n0 + 32)]

− 2
n0 + 5

(2U0 + 3U2)2
[(n0 + 3)zt − 2n0]−

n0 + 2

(2U0)2
[(n0 + 3)zt − 2n0]− 2(zt − 2)

(n0 + 3)2

(3U2)2

+ 2(zt + 1)
n0 + 3

U0 + 2U2

[
2

n0 + 5

2U0 + 3U2

+
n0 + 2

2U0

]
+ 4

n0 + 3

3U2

[(n0 + 3)z + n0 − 3

U0 + 2U2

+
1

5

n0 + 5

2U0 + 3U2

+
n0 + 2

2U0

]}
(A.9)

Ehole
triangular,def,even(n0)− Etriangular,MI,even(n0)

= − U0(n0 − 1) + 2U2 + µ− ztt
n0

3

− zt(zt − 7)t2

9

n0(n0 + 3)

U0 + 2U2

− ztt
2(n0 + 3)

9

[
2
( n0 − 2

2U0 + 3U2

+
n0

3U2

)
+

n0 + 1

2U0

]
− ztt

3

27
(n0 + 3)

{ n0

(U0 + 2U2)2
[(2n0 + 3)z2t − 2(4n0 + 3)zt − 3(17n0 + 19)]

− 2
n0 − 2

(2U0 + 3U2)2
[n0zt − 2(n0 + 3)]− n0 + 1

(2U0)2
[n0zt − 2(n0 + 3)]− 2(zt − 2)

n2
0

(3U2)2

+ 2(zt + 1)
n0

U0 + 2U2

[
2

n0 − 2

2U0 + 3U2

+
n0 + 1

2U0

]
+ 4

n0

3U2

[n0z + n0 + 6

U0 + 2U2

+
1

5

n0 − 2

2U0 + 3U2

+
n0 + 1

2U0

]}
(A.10)

Epart
triangular,def,odd(n0)− Etriangular,MI,odd(n0)

= U0n0 − 2U2 − ztt
n0 + 1

3
− µ

− zt(zt − 3)t2

9
(n0 + 1)

[ n0 + 2

U0 − 2U2

+
4

5

n0 − 1

U0 + U2

]
− ztt

2

9
(n0 + 4)

[
2

n0 − 1

2U0 + 3U2

+
n0 + 2

2U0

− 68

25

n0 − 1

U0 + 4U2

− 8

5

n0 + 2

U0 + U2

]
− 2

45
zt(2zt + 3)t2

(n0 + 1)(n0 + 4)

3U2

+
2ztt

3

3375

(n0 − 1)(n0 + 4)

(U0 + 4U2)2
[85(n0 + 1)zt + 2(524n0 + 701)]

+
4

675

ztt
3

(U0 + U2)2

{
(n2

0 − 1)[− (9n0 + 1)z2t + 4(7n0 + 3)zt + 8(11n0 + 4)]

+ (n0 + 2)(n0 + 4)[5(n0 + 1)zt + 2(37n0 + 88)]
}

+
ztt

3

27

(n0 + 1)(n0 + 2)

(U0 − 2U2)2
[− (2n0 + 3)z2t + 2(3n0 + 4)zt + 19n0 + 26]

+
2ztt

3

675

(n0 − 1)(n0 + 4)

(2U0 + 3U2)2
[25(n0 + 1)zt − 34(n0 − 1)]
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+
ztt

3

27

(n0 + 2)(n0 + 4)

(2U0)2
[(n0 + 1)zt − 2(n0 + 2)]

+
2ztt

3

675

(n0 + 1)(n0 + 4)

(3U2)2
[2(n0 − 11)z2t + 9(3n0 + 7)zt − 27(n0 + 4)]

− 32ztt
3

675

(n0 − 1)(n0 + 4)

(U0 + 4U2)(U0 + U2)
[(n0 + 1)z2t − 2(n0 + 1)zt − (13n0 + 19)]

− 8

135
zt(z

2
t − 2zt − 7)t3

(n0 + 1)(n0 + 2)(2n0 + 3)

(U0 + U2)(U0 − 2U2)
− 16ztt

3

135

(n0 − 1)(n0 + 2)(n0 + 4)

2U0(2U0 + 3U2)

− 68ztt
3

675

(n0 − 1)(n0 + 4)

(2U0 + 3U2)(U0 + 4U2)
[(n0 + 1)zt + n0 + 7]

− 8

135
zt(zt + 1)t3

(n2
0 − 1)(n0 + 4)

(2U0 + 3U2)(U0 + U2)
− 8ztt

3

135

(n0 + 2)(n0 + 4)

2U0(U0 + U2)
[(n0 + 1)zt + n0 + 7]

− 2

27
zt(zt + 1)t3

(n0 + 1)(n0 + 2)(n0 + 4)

2U0(U0 − 2U2)
− 4

675
zt(8z

2
t + zt + 9)t3

(n2
0 − 1)(n0 + 4)

3U2(U0 + 4U2)

− 8

135
z2t (zt − 1)t3

(n0 + 1)(n0 + 2)(n0 + 4)

3U2(U0 + U2)
− 4

675
zt(2zt + 3)t3

(n2
0 − 1)(n0 + 4)

3U2(2U0 + 3U2)

− 4

135
zt(2zt + 3)t3

(n0 + 1)(n0 + 2)(n0 + 4)

3U2 · 2U0

(A.11)

Ehole
triangular,def,odd(n0)− Etriangular,MI,odd(n0)

= − U0(n0 − 1)− ztt
n0 + 2

3
+ µ

− zt(zt − 3)t2

9
(n0 + 2)

[ n0 + 1

U0 − 2U2

+
4

5

n0 + 4

U0 + U2

]
− ztt

2

9
(n0 − 1)

[
2

n0 + 4

2U0 + 3U2

+
n0 + 1

2U0

− 68

25

n0 + 4

U0 + 4U2

− 8

5

n0 + 1

U0 + U2

]
− 2

45
zt(2zt + 3)t2

(n0 − 1)(n0 + 2)

3U2

+
2ztt

3

3375

(n0 − 1)(n0 + 4)

(U0 + 4U2)2
[85(n0 + 2)zt + 2(524n0 + 871)]

+
4

675

ztt
3

(U0 + U2)2

{
(n0 + 2)(n0 + 4)[− (9n0 + 26)z2t + 4(7n0 + 18)zt + 8(11n0 + 29)]

+ (n2
0 − 1)[5(n0 + 2)zt + 2(37n0 + 23)]

}
+

ztt
3

27

(n0 + 1)(n0 + 2)

(U0 − 2U2)2
[− (2n0 + 3)z2t + 2(3n0 + 5)zt + 19n0 + 31]

+
2ztt

3

675

(n0 − 1)(n0 + 4)

(2U0 + 3U2)2
[25(n0 + 2)zt − 34(n0 + 4)]

+
ztt

3

27

n2
0 − 1

(2U0)2
[(n0 + 2)zt − 2(n0 + 1)]

+
2ztt

3

675

(n0 − 1)(n0 + 2)

(3U2)2
[2(n0 + 14)z2t + 9(3n0 + 2)zt − 27(n0 − 1)]
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− 32ztt
3

675

(n0 − 1)(n0 + 4)

(U0 + 4U2)(U0 + U2)
[(n0 + 2)z2t − 2(n0 + 2)zt − (13n0 + 20)]

− 8

135
zt(z

2
t − 2zt − 7)t3

(n0 + 1)(n0 + 2)(2n0 + 3)

(U0 + U2)(U0 − 2U2)
− 16ztt

3

135

(n2
0 − 1)(n0 + 4)

2U0(2U0 + 3U2)

− 68ztt
3

675

(n0 − 1)(n0 + 4)

(2U0 + 3U2)(U0 + 4U2)
[(n0 + 2)zt + n0 − 4]

− 8

135
zt(zt + 1)t3

(n0 − 1)(n0 + 2)(n0 + 4)

(2U0 + 3U2)(U0 + U2)
− 8ztt

3

135

n2
0 − 1

2U0(U0 + U2)
[(n0 + 2)zt + n0 − 4]

− 2

27
zt(zt + 1)t3

(n2
0 − 1)(n0 + 2)

2U0(U0 − 2U2)
− 4

675
zt(8z

2
t + zt + 9)t3

(n0 − 1)(n0 + 2)(n0 + 4)

3U2(U0 + 4U2)

− 8

135
z2t (zt − 1)t3

(n2
0 − 1)(n0 + 2)

3U2(U0 + U2)
− 4

675
zt(2zt + 3)t3

(n0 − 1)(n0 + 2)(n0 + 4)

3U2(2U0 + 3U2)

− 4

135
zt(2zt + 3)t3

(n2
0 − 1)(n0 + 2)

3U2 · 2U0

(A.12)

As for the MI energy, the expressions for the MI energy up to the second order in t

are the same for both lattices except for the difference between zs and zt but the third-

order terms in t are different from each lattice. This difference between the third-order

terms originates from particles or holes that can (cannot) return to their original site

through three hopping processes in the triangular (square) lattice.
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