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Abstract. Thermotropic liquid crystals’ usual application is display technology. This paper 
describes experiments on light interaction with pure and doped liquid crystals under for these 
materials unconventional incident light powers: (1) under high-power laser irradiation, and (2) 
at the single-photon level. In (1), I will outline several nonlinear optical effects under high-
power, nanosecond laser irradiation which should be taken into account in the design of lasers 
with liquid crystal components and in fabrication of optical power limiters based on liquid 
crystals: (1.1) athermal  helical pitch dilation and unwinding of cholesteric mirrors (both in free 
space and inside laser resonators); (1.2) some pitfalls in measurements of refractive 
nonlinearity using z-scan technique under two-photon or linear absorption of liquids; (1.3)  the 
first observation of thermal lens effects in liquid crystals under several-nanosecond, low-pulse-
repetition rate (2–10 Hz) laser irradiation in the presence of two-photon  absorption; (1.4) 
feedback-free kaleidoscope of patterns (hexagons, stripes,  etc.) in dye-doped liquid crystals.  
In (2), at the single-photon level, it will be shown that with a proper selection  of liquid crystals 
and a single-emitter dopant spectral range, liquid crystal structures can be used to control 
emitted single photons (both polarization and count rate). The application of the latter research 
is absolutely secure quantum communication with polarization coding of information. In 
particular, in (2.1), definite handedness, circular polarized cholesteric microcavity resonance in 
quantum dot fluorescence is reported. In (2.2), definite linear polarization of single 
(antibunched) photons from single-dye-molecules in planar-aligned nematic host is discussed. 
In (2.3), some results on photon antibunching from NV-color center  in nanodiamond  in liquid 
crystal host and circularly polarized fluorescence of definite handedness from nanocrystals 
doped with trivalent ions of rare-earths dispersed in liquid crystal host are presented. 

Introduction 
The development of liquid-crystal optics for high-power lasers began in 1979 at the Laboratory for 
Laser Energetics (LLE), University of Rochester, when it became apparent that some optical-
component requirements of large-aperture solid-state lasers for thermonuclear fusion could not easily 
be met by solid-crystalline materials [1-3]. One such component, a high-quality, laser-beam apodized 
aperture has been the goal of solid-state laser fusion research programs both in the US and USSR since 
the early 1970's [1,4]. I worked at the Soviet/Russian Academy of Sciences (Moscow) on high-damage 
threshold apodized apertures and graded reflectivity mirrors [4-8] for reducing small-scale self-
focusing effects [4,9] in high-power laser fusion systems and for  improving the beam quality of 
industrial lasers [8].  To learn from the experience in high-damage threshold liquid crystal (LC) 
apodizing devices [1] and cholesteric mirrors [10-15], I visited LLE in 1993. Crucial in the preparation 
of LC materials with high-damage threshold under high-power laser irradiation is the purification of 
“as received” liquid crystals (LCs) through filtration to remove condensation centers for laser-induced 
bubble formation on the surface of the LC cell. It should be pointed out that high-power laser 
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applications of LCs are not the principal sector among all LC applications. Commercial vendors of 
LCs are therefore unlikely to provide materials optimized for high-power-laser use. That is why two 
types of possible contributors to laser damage of LC materials must be avoided. They are undissolved 
impurities that can be removed using particle filters and dissolved gaseous components that can be 
removed by degassing as well as synthesis byproducts or catalyst traces that can be removed by 
chromatography.  In Refs. 1-3 it was shown that after purification of the “as received” LC samples the 
laser-damage threshold for massive material modification (visible burst of stable bubbles and glass 
chips in the cell surface and/or a web of scatter lines) improved sharply. For purified (using 0.2-μm 
particle filter) and degassed, isotropic 5CB, thresholds for permanent photolysis at ~ 9.6 J/cm2 and  ~ 
4.4 J/cm2 were observed under single and multiple shots respectively (1 ns pulse duration, 1-mm beam 
diameter, wavelength λ = 1.053 μm). Under similar conditions, transient-bubble “damage” observable 
under 110 x dark-field magnification in “as received” LCs occurred at  ~ 0.76 J/cm2 for isotropic 5CB 
and ~ 0.89 J/cm2 for isotropic E7 (single-shot threshold) [1,3,16]. 
      A similar problem in purification of “as received” LC materials arises when the LC is used as the 
host for single-emitters. In this case, single-photon counting detectors can detect fluorescence from 
impurities in the LC material itself [17] instead of fluorescence from a particular single emitter. In 
addition, for some types of single emitters it is desirable to avoid oxygen, the singlet-state of which 
can contribute to single-emitter bleaching. Removing the oxygen from a monomeric LC by saturation 
with helium or argon gas permitted us to record cw-excitation fluorescence from single dye molecules 
without bleaching for more than 1 hour [18,19]. 
      The structure of this paper is as follows. It consists of two parts. Part 1 is an overview of my 
research on LCs under high-power laser irradiation. Chapter 1.1 of this part is devoted to my Moscow 
research at the Institute of the Radio Engineering and Electronics of the Russian Academy of Sciences 
on athermal cholesteric pitch dilation and unwinding of cholesteric liquid crystal (CLC) mirrors by the 
field of a light wave. Several groups tried to achieve this goal, but my group was the first who 
succeeded in it. These experiments were carried out both in free space and with the CLC mirror as the 
output coupler of a laser resonator. Special conditions of experiments permitted to prove that this 
effect is not connected with heating.  I used purified CLC material provided by A.W. Schmid (LLE, 
University of Rochester). CLC mirrors were prepared by S.V. Belyaev’s group of the Moscow Organic 
Intermediates and Dyes Institute NIOPIK. Two of my students of the Moscow Institute of Physics and 
Technology (FizTech), K. Lebedev and E. Magularia participated in this project. The research was 
supported by Grants of the International Science (Soros) Foundation, the Russian Government, and the 
Russian Foundation for Basic Research. 
     Chapter 1.2 is devoted to some of my results obtained at the Liquid Crystal Institute, Kent State 
University, on nonlinear absorption and refraction of cyanobiphenyl liquid crystals to high-power, 
several-nanosecond laser irradiation, using z-scan measurements. Two effects were observed under 
conditions of two-photon absorption: dependence of nonlinear refraction on laser-beam diameter 
(thermal-density nonlinearity) and the first-time observation of thermal-lens in LCs under several 
nanosecond irradiation and low-pulse-repetition rate.  This work was made possible by the hospitality 
of P. Palffy-Muhoray and with the help of T. Kosa and B. Taheri.  
      Chapter 1.3 is devoted to feedback-free pattern formation using highly absorbing dye-doped 
nematic liquid crystals. This work was carried out at the Institute of Optics, University of Rochester, 
owing to the hospitality of R.W. Boyd and with the help of K. Marshall and N. Lepeshkin. 
      Part 2 of this paper describes my investigation, at the single-photon level, of LCs doped with single 
emitters (dye molecules, nanocrystal quantum dots, NV-color centers in nanodiamonds), and rare-earth 
doped nanocrystals. To my knowledge, this is the first research on LCs at the single-photon level. 
Chapter 2.1 describes the results on circularly polarized microcavity resonance in quantum dot 
fluorescence in a CLC host with 4.9 times intensity enhancement in comparison with polarization 
component of opposite handedness.  Chapter 2.2 is devoted to a single-photon source with definite 
linear polarization using dye-doped nematic LC. Chapter 2.3 discusses using other type of emitters in 
liquid crystal hosts – nanodiamonds and nanocrystals doped with trivalent ions of rare-earths.   
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These projects supported by U.S. ARO and three NSF grants as well as Air Force and NASA graduate 
student fellowships, were carried out at the Institute of Optics, University of Rochester. My Ph.D. 
students L.J. Bissell [20] and J.M. Winkler as well as undergraduates C. Supranovich, R. Knox and 
summer research associate P. Freivald contributed to this project. I also used help and advice of K. 
Marshall, A.W. Schmid, L. Novotny, and A. Lieb. Some oligomeric CLC material was synthesized by 
S.-H. Chen’s group, some nanocrystal quantum dots were synthesized by T. Krauss’ group, 
nanocrystals with rare-earth ions were prepared at the University at Buffalo (Prasad’s Institute for 
Lasers, Photonics, and Biophotonics). C.R. Stroud and R.W. Boyd contributed in discussions.  

1. Liquid Crystals under High-Power Laser Irradiation

1.1. Athermal Cholesteric Pitch Dilation and Unwinding by the Field of a Light Wave 
In 1982, Winful determined that athermal, light-induced changes in the pitch of the cholesteric helix 
lead to a reflectivity drop of a CLC mirror in the region of selective reflection [21]. However, later 
attempts [22,23] at detecting this effect in laser fields remained unsuccessful, in spite of the fact that 
chiral unwinding under the influence of both static and time-varying electric and magnetic fields had 
been observed. The challenge in observing athermal helix pitch dilation  by optical fields arises from 
the larger than E ~ 104 V/cm electric-field strength requirement on the optical wave that needs to act 
on the CLC for time periods commensurate with the characteristic unwinding time of the helix th  ~  
several milliseconds. Therefore, neither short-pulse intensities [22,23] exceeding by an order of 
magnitude Winful’s estimation nor rather low intensities applied cw [10-13], succeeded in triggering 
nonlinear changes in the reflectivity of nonabsorbing CLC mirrors.  In reports [10-13], only changes in 
curvature and improvement of a beam profile of CLC mirrors were demonstrated in a cw-laser beam. 
     The first athermal drop in CLC mirror reflectivity in response to strong, circular polarized laser 
radiation was observed by my group in 1995 [24-28]. A special laser operating mode was selected 
using a pulsed, 4.5 kHz pulse-repetition-rate laser with an accumulation effect from many pulses. The 
effect was observed both in free space [24-25, 27-28] and inside a laser resonator [24,26,27-28] with a 
CLC mirror as the output coupler. To distinguish a field-induced orientational effect from thermal 
changes of the cholesteric pitch, the laser was switched to cw-operation with the same average 
intensity as in the pulsed regime. The effect was only observed at pulsed irradiation and depended only 
on peak intensity, but not on average intensity. The effect was demonstrated in four CLC mirrors with 
different substrate-surface-treatment methods for planar alignment. Sections of this Chapter 1.1 are 
devoted to the details of the experiments and their discussions. 
        It should be noted, that the authors of Ref. [29] also observed nonlinear selective reflection effects 
using the property of  CLCs to achieve faster orientational response time to high-intensity beams. At 
incident, single-pulse peak intensities of ~ GW/cm2, the CLC mirror reflectivity dropped even for 
single, nanosecond pulses. In paper [29], the light-induced reflectivity drop of CLC mirror was used in 
a Q-switched laser for passive cavity-dumping and an improved transverse beam profile. 

1.1.1. Cholesteric mirrors in free space 
For these experiments, we used a Nd:YAG laser with 1.064 μm wavelength. In this spectral region, no 
two-photon absorption effects in the CLC material should be observed. The laser operated in two 
regimes: (1) in cw mode and (2) in an acousto-optically Q-switched mode, emitting high-repetition-
rate (4.5 kHz) pulse trains, each pulse being 500 ns long. In either mode, the average power reaching 
the CLC samples was between 0.3 and 1 W. Beam cross-sections before focus were monitored by a 
CID camera and video processing setup. From the recorded beam profiles, 1/e2 intensity beam 
diameters of between 50 and 200 μm were derived, corresponding to sample-plane peak-intensities 
(for 500-ns pulses) of 106-107 W/cm2. 
      Upon focusing of free-space-propagating, 500-ns, 4.5-kHz-repetition-rate pulses into the CLC 
layer, we observed an increase in CLC-mirror transmittance of between 5% and 30-80%. This 
reflectivity drop appeared within 1 to 10 min from the onset of irradiation (Figure 1), depending on the 
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specific mirror. Interestingly, this effect did not depend on the magnitude of the average-intensity. 
Under cw irradiation conditions, we did not observe any effect even at average intensities twice as 
large as the average intensities in the pulsed, high-repetition rate mode. Furthermore, the effect 
appeared only, even in the case of high-repetition-rate pulse irradiation, under reflection of the incident 
light from the strong-anchoring side of the CLC mirror. Under 180o reversal, i.e., with the weak-
anchoring side facing the incident beam, we did not observe any effect.   

Figure 1. Dependence of  a CLC mirror 
transmittance on irradiation time under 
high repetition rate, pulsed irradiation at 
different incident intensities. 

The temperature drift in selective reflection for our given CLC mixture is estimated at +1 nm/Co, 
requiring a temperature excursion of more than 50 Co to account for the ~70% change in CLC-mirror 
transmittance at 1.064 μm. We did not observe such heating in the present CLC cells. 
      A recovery of the mirror reflectivity to its prior condition appeared after either terminating 
irradiation or switching it to cw-mode. 

1.1.2. Cholesteric mirrors in laser resonators 
For the laser-resonator studies, a plane-parallel cavity of the same laser used in section 1.1.1 was 
formed by a dielectric hard mirror and a CLC output coupler.  An active Nd:YAG element was 
pumped by a continuously operating flashlamp filled with krypton (the voltage across this lamp was 
100 V). Pumping of the active element generated a thermal lens whose optical power was +1 
dioptre/kW. Switching to high pulse-repetition rate operation (500 ns pulse duration, 4.5 kHz pulse 
repetition rate) was performed by an acousto-optical switch. A quartz quarter waveplate was placed 
inside the resonator between the active element and the CLC output coupler.  The diameter of the 
optical beam at the laser output was ~ 0.8 mm at an average output power of 1 W.  No significant 
difference was observed between the slope efficiency of the laser with conventional dielectric or CLC 
output mirrors when the reflection coefficients were the same. The advantage of the CLC mirror was a 
lower sensitivity of the laser operation to cavity misalignment. At cw-operation and at low pumping 
rate in the pulsed high-repetition-rate regime, the slope efficiency and the lasing stability were the 

same for laser with CLC and dielectric mirrors. 
At high flashlamp currents, the average output 
power obtained in the high-repetition-rate mode 
decayed rapidly and disappeared after 0.5–5 min 
from switching, but only when the side of the 
CLC mirror with strong surface anchoring was 
facing the gain medium. The pump threshold 
(i.e., the current to the flashlamp) at which lasing 
was suppressed was different for each CLC 
mirror. It was 28.5–29.5 A for the output mirrors 
1–3 with reflection coefficient R = 95%, and ~ 
24.5 A for the CLC mirror 4 with R = 85%. 

Figure 2. Time dependence of the average output power of a CLC mirror laser with changing the 
operating regime from cw to high-repetition rate (t1) and back to (t2). Solid and dashed curves present 
results for different mirrors. 
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Figure 2 depicts the time dependence of the laser output power obtained for two CLC mirrors when a 
change from the cw to the pulsed regime occurred at high flashlamp currents. Turning on the acousto-
optical switch (at t1) quenched the lasing action because of a drop in the reflection coefficient of the 
CLC mirror. Turning off the switch (at t2) gradually restored the lasing action. A second change to the 
pulsed regime suppressed lasing again and it was restored when the laser was made to operate in the 
cw-mode again.  

1.2. Thermal-Density Nonlinearity and Thermooptical Effects in Liquid Crystals under High-
Power, Several Nanosecond Laser Irradiation 

In this Chapter, I will briefly overview some of my results on nonlinear optical response of 
cyanobiphenyl LCs to high-power, nanosecond laser irradiation which I obtained at the Liquid Crystal 
Institute, Kent State University in 1997–1998.  My full review on this subject including other group 
results is published in [28]. I would like to emphasize two important results which were overlooked in 
the past in z-scan measurements of LCs in the presence of nonlinear (or linear) absorption: (1) for 
isotropic LCs at several-nanosecond time scale and several tens-micrometers beam-waist-diameter  the 
influence of coupled thermal and density effects on nonlinear refraction depends, through buildup 
time, on the beam-waist diameter; (2) for planar nematic layers, cumulative effects in heating (and in 
refractive nonlinearity) were observed even at low, 2–10 Hz pulse repetition rate, even for undoped 
(pure) liquid crystals. These results are important for optical power limiting and switching 
applications, and for intensity and beam-quality sensors of pulsed, high-power lasers.  
      Heating of undoped cyanobiphenyl LCs by short-pulse laser radiation in the visible range that 
drives photoacoustical (thermal-density) and thermooptical effects, is caused by two-photon absorption 
[30,31], concurrent or subsequent excited state absorption [30,32-34], and the efficient decay of the 
excited states through radiationless-recombination channels [30,32-34]. Strong nonlinear absorption in 
the visible was observed in optical power limiting studies of LCs [35-43] and in z-scan measurements  
[44-49].  For the nematic phase, the two-photon absorption coefficient has a several-times-higher value 
for incident polarization parallel to the LC molecular dipole direction than for perpendicular 
polarization [31].  
      As in any absorbing medium, in the presence of nonlinear absorption, the thermal mechanism 
causes refractive nonlinearity in nematic and isotropic LCs. The thermal nonlinearity coupled to 
density changes [35-36] (which is negative) competes with the orientational (positive) nonlinearity in 
changing the sign of the total refractive nonlinearity [28]. Another mechanism of density changes, 
electrostriction, with buildup time in the nanosecond range, is comparable to thermal/density 
contributions if medium absorption coefficients are low. At 0.532 μm a strong heating mechanism 
exists for the monomeric LCs as a result of two-photon and excited state absorption. That is why 
electrostriction is neglected in these experiments. 
       Refractive index changes by heating are the sum of two contributions: 

  T)T/n()/n(n T ∆∂∂+ρ∆ρ∂∂=∆ ρ   ,                  (1) 
where ρ is the density, T is the temperature. It is very important in the current context that each term in 
(1) has its own turn-on time, and will contribute differently under transient and steady-state regimes 
[28,50-52].  

1.2.1. Thermal-density nonlinearity ( ρ∆ρ∂∂ T)/n  
For several-nanosecond pulse duration and several tens of micrometers beam waist, the buildup time 
tac of the thermal-density nonlinearity (Δn = ( ρ∆ρ∂∂ T)/n ) can be close to the laser pulse duration  to : 

soac V/rt =  ,  (2) 
where ro is the beam radius and VS is the velocity of sound (VS (LCs) ~ 1500 m/s). For tac  >  to the 
thermal-density-nonlinearity will not develop during the pulse. Experimental values of nonlinear 
refractive index n2 for this transient regime were reported in Ref. 50 for absorbing organic liquid. It 
was found experimentally, that the transient absolute value of n2 for to = 5 ns diminishes with ro 
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increasing from 9 to 32 μm. (The value of n2   is defined in our paper by n = n0 + 1/2 n2
2E ). In a 

series of papers [51,52]  numerical modeling was carried out for this regime. Acoustic grating 
generation in LCs have been intensively 
studied both under subpico-, pico- and 
nanosecond excitation [30,32-36].       
     The typical z-scan curves of transient 
nonlinear refraction of  room-temperature 
chiral additive CB15 samples with 2-mm 
thickness for 0.532 μm  laser excitation 
[28,53] are presented in Figure 3 (a)-(c) 
for incident intensity I = 0.74 GW/cm2. 
For comparison, a z-scan curve for CS2 
with 2-mm thickness is presented as well 
(Figure 3 (d)) for I = 0.73 GW/cm2. The 
results from these curves yield the 
following values [28]: n2(CB15) = 2.5 n2 
(CS2). Beam-waist diameter was ~ 36 μm, 
and to = 6.8 ns, 10-Hz pulse repetition rate. 
The aperture factor for these z-scan 
measurements was S~0.1 [28]. 

Figure 3.  Z-scan curves for chiral additive CB15: (a) open aperture; (b) closed aperture; (c) 
closed/open aperture; and (d) closed aperture for CS2. 

     For 5CB above phase transition from nematic to isotropic state with 2-mm-cell thickness under 
similar conditions in the temperature interval 35.6–50oC, the  transient value of n2(5CB) varied from 
2.5 to 3.7n2(CS2).  In both cases, isotropic 5CB and CB15, self-focusing (converging lens) was 
observed.  The absolute value of  n2(CS2) for these conditions is equal to 1.2  x 10-11 esu [54]. In 
papers [44,49] for 7-μm diameter  measurements, negative values of n2 (self-defocusing) were reported 
for isotropic 5CB using the same laser.  This difference is explained by the dependence of the value of 
transient thermal-density nonlinearity with negative sign on the beam-waist diameter. For 7-μm 
diameter, tac is less than the pulse duration time and nonlinear refraction as a result of density changes 
prevails under the positive-sign, transient, orientational nonlinearity. (5CB (nematic) and CB15 have 
identical chemical composition, but CB15, in difference to 5CB, contains a chiral carbon [28]). 

1.2.2. Thermooptical effects TTn ∆ρ)/( ∂∂ as the result of cumulative effects in heating of planar-
aligned LC-cells 
The thermooptic coefficient dn/dT  in nematic LCs is extraordinarily large, ranking among the largest 
of all known materials [55]. Not unexpected for these highly anisotropic molecules, it depends on the 
orientation of the molecules. E.g., dnpar/dT  was reported [56] of ~ 2.5 x 10-3 grad-1 for 5CB in the 
temperature interval 26–31oC for incident linear polarization parallel to the molecular orientation 
direction. For “perpendicular” polarization, dnperp/dT is of opposite sign and equals ~ -1/2 dnpar/dT 
[55]. In the proximity of the phase transition to the isotropic state, the slope of both dnpar/dT  and 
dnperp/dT steepens [56]. 
      For nematic LCs, it is well-known that the thermooptical effect experiences a lengthening of its 
buildup time (tens-hundreds of nanoseconds), rendering it insignificant on a several-nanosecond time 
scale [35,36]. Similar buildup times are reported in Ref. 50 for an absorbing organic fluid. 
Thermooptical effects for ro = 32 μm were found to be more significant for pulses longer than ~100 ns.  
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     Because of the slow buildup time, thermooptical (thermal-lens) spatial self-phase-modulation rings 
in the beam cross-section were observed only for cw laser radiation [57-59]. LC heating was in this 
case due to absorbing coatings on cell glass-substrates, dissolving absorbing dyes in LCs, and/or 
irradiation of unpurified LCs  by high-average power (~ 1W for 100-μm spot size [57]) beams. 
     For pulsed lasers the first report on thermal-lens spatial self-phase-modulation rings was published 
in my papers [28,60,61].   I irradiated a planar-aligned nematic cell with a 0.532-μm laser beam (7 ns 
pulse duration, 10 Hz pulse repetition rate), propagating perpendicular to the cell walls.  Linear 
polarization of the beam was parallel to the alignment direction of the LC molecules. In this 
configuration, no orientational effects should be observed. Over time spans of ~ 0.5–ten seconds  high-
contrast, concentric, elliptical diffraction rings appeared in the far-field (Figure 4) whose major axes 
orient themselves perpendicular to the incident polarization direction. Once formed, each set of rings 
may remain stable for up to several minutes. Upon continued pulsed irradiation over several minutes, 
the number of these rings varies systematically with laser intensity (sometimes between 1–2 and (up 
to) 20 rings). This ring pattern (see Figure. 4) differs from that typically obtained from orientational 
spatial self-phase modulation. In our case, the ring pattern evolves under polarization conditions for 
which, in principle, no orientational effects may occur (polarization of laser light is parallel to the 
director orientation). Under cw-irradiation at twice the average intensity than the average intensity 
under pulsed irradiation, the effect fails to exist. 

Figure 4. Time evolution of the elliptical ring pattern in the far-field (development of a thermal lens). 

     For explanation of the slow buildup time spatial self-phase modulation as well as its absence under 
cw irradiation of comparable average intensity, the heating of LC under two-photon absorption 
conditions was further scrutinized.  The finite-element solutions were obtained by A.W. Schmid using 
the commercial ANSYS/Thermal code [28]. Numerical calculations of heating as cumulative action of 
many, 10-Hz repetition-rate pulses yield results on temperature increase and saturation at the end of 
the sequence.  Evaluation of the phase shift caused in a laser beam by calculated temperature increase 
(ΔT  ~ 5oC)  gave  number of self-modulation rings N = 3 [28].  A temperature increase after single 
pulse irradiation results in no diffraction rings in the beam. Only the cumulative action of many pulses 
approaching a steady-state value yields a stable spatial self-phase modulation elliptical ring pattern as 
displayed in Figure 4.  It should be noted that some cumulative effects in LC nonlinearities at low 
pulse repetition rates were also reported in paper [63]. 

1.3. Feedback-Free Pattern Formation from Dye-Doped Liquid Crystals under Nanosecond Laser 
Irradiation 

In this chapter, I will describe some experimental results on high-definition patterns observed under 
10-Hz-pulse-repetition-rate, nanosecond laser irradiation of highly absorbing planar-nematic LC layers 
doped with dichroic dye. The patterns were observed at incident intensities I ~ 5–10 MW/cm2 in a 
single beam and without any feedback involved. An incident polarization parallel to the nematic 
director was used.  Under periodic pulsed laser irradiation, far-field beam patterns at the output of a 
dye-doped LC layer changed kaleidoscopically from rings and stripes to multiple hexagons. This 
pattern-formation regime had a buildup time of several seconds to minutes.  
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1.3.1. Experimental setup and cell preparation 
A 0.532-µm laser beam with a pulse duration of ~ 20–26 ns and pulse repetition rate 10 Hz was 
focused by a 24-cm-focal-length lens into the dye-doped, planar-aligned nematic LC cell. The incident 
polarization was parallel to the orientation of the LC molecular director. The beam diameter in the 
focus was ~ 150 µm at the 1/e level [64].  The far-field patterns were recorded from a screen by a 
video camera onto magnetic tape from which the spatial intensity distribution for each pulse was 
digitized afterwards.  
    The nematic LC mixture E7 doped with the dichroic azodye “Oil Red O” with a 1.5% weight-
concentration was used for filling the LC cells. E7 was supplied by EM-Industries (E7 is the mixture 
of cyanobiphenyls with ~51% of 5CB [28]); Oil Red O was supplied by Sigma-Aldrich.  Planar-
aligned nematic LC-layers were prepared using buffing techniques on Nylon 6/6 alignment layers on 
Soda-Lime-glass plates of size 2.5 cm x 2.5 cm x 0.3 cm. Glass-bead-spacers mixed with an UV-
epoxy provided cell thicknesses between 10 and 20 µm. Coating the substrates by Nylon 6/6, buffing, 
cell assembly, and filling the cells with LC were carried out in a clean room. UV-cured epoxy was 
used for sealing the cells. Cell transmittance at low incident intensities was ~ 1% for an incident 
polarization parallel to the nematic director, and  ~ 10–15 % for the perpendicular polarization.        

1.3.2.  Pattern formation experiments 
At incident intensities I ~ 1–5 MW/cm2 several phenomena were observed during repetitive 
illumination of LC-cells by a focused laser beam with 10-Hz pulse-repetition rate, for time periods of 
several seconds to several minutes. These phenomena include the following [65]: 

• A polarization component perpendicular to the nematic director appeared after the beam
passed through the nematic layer. Simultaneously, a several-fold increase in cell transmission
was observed.

• Following that, stable far-field patterns appeared in the beam cross-section, possibly as the
result of heat-flow [66,67] and/or flow-reorientational [67-71] birefringence (Figure 5):

(1) The perpendicular polarization component (Figure 5, b) took on the far-field form 
of an optical four-leaf clover (Maltese-like cross). The bright axes of the cross were 
oriented at 45o  to the incident polarization; 

(2)  The incident, parallel polarization component evolved into the far-field pattern in 
the form of a ring with a bright spot inside (Figure 5, c); 

• Stable patterns existed for more than one hour of irradiation, but disappeared after switching
the laser to a 5-Hz repetition rate.

      At the higher-incident-intensities regime (I ~ 5–10 MW/cm2), a new kind of high-definition 
patterns developed with a buildup time of several seconds to minutes and only for the polarization 
component parallel to the nematic director. Figure 6 shows the beam cross-sections of the two 
spatially separated polarization components both incident and induced (using a Glan-prism) 
overlapping in the center. The left side of the images depicts the parallel-polarization (incident) 
component; the right side – the perpendicular-polarization (induced) component. The optical four-
leaf-clover of the perpendicular-polarization component (Figure 5, b) almost always became smeared 
into a random speckle pattern with a bright spot in the center (see the right side of the images). At the 
same time, the parallel-polarization component developed a high-definition pattern that 
kaleidoscopically changed from pulse to pulse from multiple hexagons (Figure 6, a), stripes (Figure 6, 
b), to rings (Figure 6, c) (see left sides of the Figure 6 images). The patterns disappeared after 
switching the laser to 5-Hz repetition rate. More details will be published elsewhere.  
     Near-field images of the laser-beam cross-section during the pulsed laser action showed 
kaleidoscopic changes from one to two and three spots patterns with dimensions ~ 5–15 μm and 
distance between spots  ~ 35–70 μm. 
      The observation of high-definition hexagonal/stripes/rings patterns only for the “parallel” 
polarization component can be explained by the highly dichroic dye used for this experiment: cell 
transmittance was an order of magnitude higher for the “perpendicular” polarization component than 
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for the “parallel” polarization component.  Hexagonal/stripes/rings patterns’ low contrast makes them 
invisible for the “perpendicular” polarization component. Only a four-leaf-clover pattern can be seen 
in this component because of its existence’s connection with another mechanism — the aberrations of 
the laser beam in heat-flow and/or flow-reorientational birefringent media. 

Figure 5. Far-field spatial patterns at low 
incident intensities: (a) no polarizer; (b) 
perpendicular-polarization (induced) 
component; (c) parallel (incident) polarization 
component. 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 6. Representative selection of far-field spatial patterns at incident intensities  ~5 – 10MW/cm2 
for the polarization component parallel to the director (left side of each image) and for the induced, 
perpendicular polarization component (right side of each image). A Glan prism was used to separate 
the two polarization components. 
 
      We explain the observed hexagonal/stripes/rings patterns in the far-field by the  diffraction of the 
laser beam on light-induced one/two/three or more several-micron-size “drops” or “holes” with 
absorption and/or refraction properties different from the surrounding material. The patterns’ ring 
structure can be attributed to the diffraction of laser light at the sharp boundary of the “drops”. The 
variation in the “drop” numbers in the focal region, their size, the distance between them, and the 
gradient of transmittance inside the drop define the enormous variety of patterns we observed. A 
possible mechanism contributing to the creation of such “drops” is the instabilities in the presence of  
the Soret (thermal diffusion) effect, including phase separation of the dye from the liquid crystal.  
Phase separation of the dye from liquid crystal was also observed in Ref. 72   under cw-irradiation of a 
dye-doped liquid crystal. 

2. Liquid Crystals at the Single-Photon Level  
This chapter describes a new application for LCs  — quantum information technology.  A single-
photon source (SPS) with definite polarization that efficiently produces photons exhibiting 
antibunching (separation of all photons in time) is a pivotal hardware element in absolutely secure 
quantum communication. For single photons, the second order correlation function  g(2)(t) = 

2I
tItI
><

>+<
)(

)()(
τ

τ  should have a minimum  at t = 0 (in an ideal case  g(2)(0) = 0), indicating the 

absence of pairs, i.e., antibunching [73]. Here I is intensity. The critical issue in producing single 
photons exhibiting antibunching is the very low concentration of photon emitters dispersed in a host, 
such that, within an excitation-laser focal spot, only one emitter becomes excited which will emit only 
one photon at a time, because of its finite fluorescence lifetime. 

(a) (b) (c)(a) (b) (c)

(a) (b) (c)(a) (b) (c)
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     In the BB84 quantum key distribution protocol, the sender (Alice) and receiver (Bob) employ the 
linear and circular polarization states of single photons. The linear and circular polarization bases can 
be used to provide two different quantum level representations of zero and one. So a desirable feature 
for a SPS is definite photon polarization, since, if the photon has unknown polarization, filtering it 
through a polarizer to produce the desired polarization for quantum key distribution will reduce by half 
the efficiency of a quantum cryptography system. In another implementation, a SPS becomes the key 
hardware element for quantum computers with linear optical elements and photodetectors [74].  
      In this chapter, experimental results of room temperature, robust SPSs with definite polarization 
using single-emitter fluorescence in either cholesteric or nematic LC hosts are discussed [17-20,75-
79]. A desirable polarization state (either circular with definite handedness or linear with definite 
direction) of a fluorescence of the emitter in a LC host can be produced either by providing a chiral 
microcavity environment of CLC or by aligning emitters’ dipole moments in a definite direction in a 
nematic LC. SPSs based on single emitters in LCs are the room-temperature alternatives to cryogenic 
SPSs based on semiconductor heterostructured quantum dots in microcavities prepared by molecular 
beam epitaxy (MBE), see review [80]. Definite linear polarization of single photons from 
heterostructured quantum dots both in elliptical pillar microcavities, and in a 2-D photonic crystal, was 
reported for resonance wavelength at cryogenic temperatures.  In difference to expensive MBE, well 
developed LC alignment technology is relatively easy and fast. Different types of single emitters can 
be easily dissolved or dispersed both in monomeric (fluid-like) or oligomeric (solid) LCs. In addition 
to emitter alignment and the possibility of fabrication of photonic-bandgap structures from LCs, LC 
technology has another advantage. Special treatment of LCs (oxygen depletion) can protect the 
emitters from bleaching [18,19].   In Ref. [18,19], we reported on a significant diminishing of dye 
bleaching by saturation of LC with helium. Another remarkable advantage of LCs, e.g., changing its 
properties with temperature or by external-field variation, can provide SPS tunability. As single 
emitters, we used nanocrystal quantum dots (NQD), single NV-color centers in nanodiamonds, and 
single dye molecules.  
       The structure of this chapter is as follows. Section 2.1 describes antibunching and circularly 
polarized resonance with definite handedness in nanocrystal quantum dot fluorescence in a glassy CLC 
oligomer photonic bandgap microcavity. 4.9 times  intensity enhancement was observed in comparison 
with a polarization component with opposite handedness. Section 2.2. is devoted to linearly polarized 
fluorescence with a definite polarization state from single dye molecules aligned in a glassy nematic 
LC oligomer. The last  section 2.3. of this chapter describes  photon antibunching from NV-color 
center  in nanodiamond  in liquid crystal host and circularly polarized fluorescence of definite 
handedness from nanocrystals doped with trivalent ions of rare-earths dispersed in liquid crystal host. 

2.1. Circularly Polarized Microcavity Resonance in Quantum Dot Fluorescence in a Photonic 
Bandgap Cholesteric Liquid Crystal Host 
We used left-handed cyclosiloxane oligomeric CLC powder from Wacker Chemie [81,82] and 
produced a planar-aligned glassy CLC structure doped with CdSeTe nanocrystal quantum dots 
(NQDs), Qdot 800 ITK organic, Invitrogen, fluorescence maximum at 790 nm   [78].  Doping was 
accomplished by heating the CLC to ~135° C (the oligomer’s melting temperature) and then mixing 
the melted CLC with quantum dots dispersed in toluene at a concentration of ~1 µM, with heating 
allowed to continue until the toluene evaporated.  Subsequently, cells were prepared using two 
polyimide buffed glass coverslips.  The CLC doped with quantum dots was placed on a buffed 
coverslip and heated beyond the oligomer clearing temperature of 180° C.  After the sample was 
cooled to ~135° C, the second buffed coverslip was placed on the first and sheared along the direction 
of polyimide buffing.  A slow cooling process back to a glassy (solid) state preserved the CLC order. 
This resulted in a photonic bandgap microcavity with a center wavelength of 910 nm.  

Prepared samples were analyzed using our homemade confocal microscope setup.  We excited the 
sample with cw, 633 nm laser light from a HeNe laser and observed the spectrum of the sample’s 
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fluorescence.  By placing an achromatic quarter waveplate and linear polarizer in front of the 
spectrometer, we were able to filter for different handedness of circularly polarized (CP) fluorescence. 

The resulting fluorescence spectra can be seen in Figure 7, left. Left-handed (LH) CP light 
experienced the photonic bandgap and therefore the black LHCP curve in Figure 7, left (curve 1) 
shows microcavity resonance, indicating that the LHCP light coupled to the cavity mode.  The LHCP 
fluorescence had a center wavelength of 833 nm and a FWHM of 16 nm (Q ~ 50), as compared to a 
FWHM of 76 nm for RHCP fluorescence.  The center wavelength of this resonance roughly matches 
the edge of the photonic stopband, centered at 910 nm, and shown in Figure 7, left  by the blue curve 
3. The observed right-handed (RH) CP fluorescence is shown in red in Figure 7, left (curve 2) and was
less intense due to not experiencing the CLC microcavity, showing no sign of line narrowing.  The 
maximum intensity ratio between LHCP and RHCP was a factor of 4.9. To characterize the degree of 
circular polarization, the circular polarization dissymmetry factor ge is used: 

     ge =  2 (IL  – IR)/(IL  + IR) ,                                                 (3) 
where IL and IR are intensities of LHCP and RHCP light, respectively. At the wavelength of the 
resonance shown in Figure 7, left, ge = 1.3 [78]. Note that for unpolarized light, ge = 0, which we 
observed when NQDs were spin-coated on a bare glass slip.  

Figure 7, LEFT: Circularly-polarized fluorescence resonance from  NQDs  doped in a glassy CLC 
microcavity. Curve 1:  LHCP fluorescence spectrum of the NQDs with a resonance at 833 nm. Curve 
2: RHCP fluorescence spectrum for the same NQDs. Curve 3: selective transmission of LHCP light 
through CLC microcavity. Inset: Dependence of resonance peak intensity on rotation of a linear 
polarizer (LP) after a fixed quarter wave plate.  RIGHT:  (a) Confocal fluorescence microscopy image 
of single NQDs in a glassy CLC photonic bandgap microcavity. (b) Raw coincidence counts c(t) 
(right-hand scale) and g(2)(t) (left-hand scale), showing antibunching (dip at t = 0). 

Figure 7, right (a), shows a confocal fluorescence raster scan taken of a sample prepared using a 
relatively low concentration of quantum dots dispersed in toluene (~10 nM), with the higher intensity 
spots indicating the location of fluorescing quantum dots in the glassy CLC microcavity.  Focusing on 
a spot (circled in white on Figure 7, right (a)), we checked for photon antibunching and obtained the 
coincidence histogram shown in Figure 7, right (b). 

Figure 7, right (b) displays the histogram of coincidence counts c(t) in blue, with g(2)(t) derived by 
normalizing c(t).  The measured g(2)(0) value from the fit shown in Figure 7, right  (b) (green, solid 
curve) is g(2)(0) = 0.382 ± 0.037 [78]. As g(2)(0) < 0.5, this indicated that we have managed to isolate 
the fluorescence of a single quantum dot, serving as a source of antibunched light in a glassy CLC 
microcavity.  

It should be mentioned that the same  cholesteric structures can be used for lasing [83]. Our results 
on dye-doped cholesteric lasers are reported in Refs [84-85]. 

2.2. Single-Photon Sources with Linear Polarization 
Another intriguing application of liquid crystals as hosts for single emitters is using the planar-
alignment of nematic liquid crystals to provide doped molecular dipoles definite alignment along a 
preferred direction for efficient excitation [17,75].  This allows for the creation of a single-photon 
source with fluorescence of definite linear polarization. 
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Samples were prepared using DiIC18(3) dye (DiI) molecules from Molecular Probes doped in a 
glassy nematic liquid crystal oligomer  synthesized  by  S. H. Chen’s group of University of Rochester 
[17, 75].  Planar-aligned layers of this doped liquid crystal host of ~100 nm thickness were prepared 
using photoalignment of the liquid crystal molecules. 

Photoalignment was performed by first spin-coating a Staralign-2100 linearly photopolymerizable 
polymer (Rolic Technologies Ltd.) to a cleaned cover glass slip, which was then cured at ~135° C.  
This film was then irradiated by a polarized UV light for 10 to 15 minutes, with further irradiation 
used to bleach the polymer impurity fluorescence. 

An oligomer solution doped with dye and diluted in chloroform was subsequently spin-coated onto 
these Staralign coated glass slips.  After the chloroform evaporated, we heated the sample to ~80°C, 
slightly above where the oligomer transition to a nematic state occurs, after which the sample was 
slowly cooled to a glassy state, preserving the planar-aligned nematic order. 

To characterize prepared samples, we used the Witec alpha-SNOM  in a confocal mode, exciting 
the sample using a Nd:YAG laser for cw, 532 nm irradiation.  Single-photon counting avalanche 
photodiodes were used as photodetectors for confocal fluorescence scans, with a polarizing 
beamsplitter used so that each photodetector collected light of orthogonal polarization.  Molecules 
were identified by the peak pixel intensity values  and a linear polarization measure ρ was determined 
for each molecule by comparison of the perpendicular and parallel polarization images.  Our measure 
of linear polarization was  

par perp par perpρ  ( -  ) /  (  )I I I I= + , (4) 

where Ipar and Iperp are, respectively, the fluorescence intensities parallel and perpendicular to the 
direction of alignment. The only difference of ρ with the degree of polarization is that it allows 
inclusion of the direction of polarization as part of the measure, depending on whether ρ is positive or 
negative. 

The different ρ values that we found are histogrammed in Figure 8.  A clear asymmetry in Figure 8 
demonstrates a preference towards fluorescence polarized perpendicular to sample alignment.  This is 
in contrast to the expected fluorescence from an unoriented sample, which would yield a symmetric ρ 
histogram [86].   

Figure 8.  LEFT: Histogram of polarization measure ρ from 38 different DiI dye molecules in a 
planar-aligned nematic liquid crystal host [17,75]. RIGHT: Schematic view of a DiI dye molecule in a 
nematic liquid crystal host. The long axis (alkyl chains) of the DiI molecules tend to orient themselves 
along the rod-like nematic molecules, while the dipole, which is parallel to the bridge between the 
alkyl chains, orients perpendicular to the direction of liquid crystal alignment. 

That DiI molecules doped in this planar-aligned liquid crystal host tend to fluoresce with 
polarization perpendicular to the alignment of the liquid crystal can be explained by the molecular 
structure of these molecules.  As illustrated in Figure 8, right, it is likely that two alkyl chains orient 
themselves parallel to the rod-like molecules of the nematic liquid crystal host.  The absorbing and 
emitting dipoles, however, are parallel to the bridge between these alkyl chains.  Therefore, these 
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dipoles end up oriented perpendicular to the direction of liquid crystal alignment, hence the 
fluorescence having a polarization orthogonal to the alignment of the liquid crystal. 

To confirm these results, additional experiments were carried out both with monomeric nematic 
liquid crystal and nematic glassy liquid crystal oligomers.  Figure 9, left, shows intensity changes  of 
fluorescence of DiI molecules in a planar-aligned monomeric nematic liquid crystal (E7), as the linear 
polarization of the excitation 532-nm  laser  beam was rotated over 360° degrees.  Figure 9, left, shows 
a clear dependence of the fluorescence intensity on the exciting angle of polarization, where the 
maximum fluorescence occurred when the DiI molecules were excited by light with linear polarization 
perpendicular to the alignment of the liquid crystal.  

Figure 9. Polarized fluorescence of DiI dye in planar-aligned nematic liquid crystal hosts.  Samples 
were excited using a 532 nm laser.  LEFT: Intensity of DiI fluorescence in E7 as linear polarization of 
excitation laser light was rotated over 360°, with red dots showing experimental measurements and the 
blue solid curve providing a sinusoidal fit.  The zero angle of polarization corresponds to the direction 
perpendicular to liquid crystal alignment.  CENTER: Red (curve 1) and black (curve 2) show 
fluorescence spectrum with polarization perpendicular and parallel to the host alignment direction 
respectively.  RIGHT: Antibunching histogram with a dip taken from the fluorescence of a single 
molecule of DiI dye in an E7 nematic host under pulsed, 532 nm excitation. 

Figure 9, center, shows spectrofluorimeter measurements made for polarization perpendicular and 
parallel to the sample alignment, this time having used a sample of planar-aligned glassy nematic 
liquid crystal oligomer doped with DiI molecules of more than 1% concentration by weight.  The value 
of ρ was measured from  Figure 9,  center, by comparing the peak intensities of  the  curves, yielding  
ρ = -0.5.  The results of Figure 9, left and center, indicated a clear preference for fluorescence with 
definite linear polarization perpendicular to the sample alignment. 

Figure 9, right, shows an antibunching histogram for a single molecule of DiI dye doped in an E7 
nematic host, taken using pulsed, 532 nm excitation [20].  The value for g(2)(0) is g(2)(0)  = 0.77 ± 0.10. 
This relatively high value of g(2)(0)  may be due to the fact that the Raman spectrum of the E7 overlaps 
with the fluorescence spectrum of DiI dye. 

2.3. Rare-Earth-Doped Nanocrystals and Color Centers in Nanodiamonds 
Additional work with monomeric CLC based microcavities included doping with emitters such as 
nanodiamonds with nitrogen vacancy color centers  and nanocrystals rare-earth ions.  These alternative 
emitters can provide a source of single photons that is less likely to bleach. 

Figure 10, left, shows photon antibunching from  nitrogen vacancy color center  in nanodiamond  in 
a CLC (E7 and CB15) microcavity with a stopband centered at 725 nm, under cw, 514 nm excitation. 
The g(2)(0) value determined via fit (shown in Figure 10, left, as the dashed red line) was g(2)(0) = 0.74 
± 0.08.  The fluorescence spectrum of nitrogen vacancy centers in nanodiamonds doped in this 
monomeric CLC when excited using cw, 514 nm excitation from an argon ion laser is shown in Figure 
10, center. 
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A monomeric CLC microcavity made from a mixture of E7 and CB 15 was also doped with rare-
earth Er3+ and Yb3+ ions in 20 nm to 30 nm sized NaYF4 nanocrystals with 20% Yb and 2% Er.  When 
these ions were excited using a cw, 976 nm diode laser at incident powers of ~500 µW, we were able 
to observe upconverted fluorescence of Er3+, as shown in Figure 10, right.  The emission lines 
observed were attributed to the transitions 2H11/2, 4S3/2 → 4I15/2 (green) and 4F9/2 → 4I15/2 (red) of the Er3+ 
ions [87].  The populations of upper levels in Er3+occur due to an efficient energy transfer from the 
Yb3+ to the Er3+.  This fluorescence was measured to have a circular polarization dissymmetry factor of 
ge = -0.77 at 680 nm.  These nanocrystals doped with rare-earth ions were prepared at the University at 
Buffalo (The Institute for Lasers, Photonics and Biophotonics). 

 

 
Figure 10. LEFT: Photon antibunching  from nitrogen vacancy center nanodiamond in a CLC host. 
Black curve shows the raw data. Red dashed curve shows the fit. CENTER: Fluorescence spectrum of 
nitrogen vacancy centers in nanodiamonds in CLC host (cw, 514-nm laser excitation). RIGHT: Red 
solid lines: Fluorescence spectrum of Er3+ ions doped in NaYF4 nanocrystals dispersed in a chiral CLC 
microcavity (E7 and CB15). The blue dashed curve shows the spectral transmission of CLC 
microcavity measured with unpolarized light. 

Summary 
An overview of some experiments and new applications of liquid crystals under two “extreme” levels 
of incident light powers are presented [79].  In many such applications for better device performance, 
“as received” liquid crystals materials must be purified and degassed. Several nonlinear optical effects 
under high-power, nanosecond laser irradiation are outlined: (1) athermal helical pitch dilation and 
unwinding of cholesteric mirrors by the field of a light wave; (2) dependence of refractive nonlinearity 
on the geometry of irradiation in the presence of two-photon (or linear) absorption; (3) the first 
observation of thermal lens effects in liquid crystals under several-nanosecond, low-pulse-repetition 
rate (2–10 Hz) laser irradiation in the presence of two-photon absorption; (4) feedback-free pattern 
kaleidoscope in dye-doped, highly absorbing liquid crystals.  
       At the single-photon level, definite linear and circular polarizations of single (antibunched) 
photons were obtained using single-emitter fluorescence in planar-aligned nematic and cholesteric 
hosts. Circular-polarized with definite handedness, cholesteric microcavity resonance was observed. 
These results are important for creation of room-temperature, single-photon sources, key devices for 
absolutely secure quantum communication. These single-photon sources can be used in fundamental  
quantum optics experiments. 
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