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Abstract. We consider differential operators acting on densities of arbitrary weights on manifold
M identifying pencils of such operators with operators on algebra of densities of all weights. This
algebra can be identified with the special subalgebra of functions on extended manifold M̂ . On
one hand there is a canonical lift of projective structures on M to affine structures on extended
manifold M̂ . On the other hand the restriction of algebra of all functions on extended manifold to
this special subalgebra of functions implies the canonical scalar product. This leads in particular
to classification of second order operators with use of Kaluza-Klein-like mechanisms.

1. Algebra of densities

In mathematical physics it is very useful to consider differential operators acting on densities of
various weights on a manifold M (see [1] and citations there). We say that s = s(x)|Dx|λ is a
density of weight λ on M if under change of local coordinates

s = s(x)|Dx|λ = s
(
x
(
x′
)) ∣∣∣∣det

(
∂x

∂x′

)∣∣∣∣
λ

|Dx′|λ ,

(λ is an arbitrary real number). We denote by Fλ(M) the space of densities of weight λ on manifold
M . (The space of functions on M is F0(M), densities of weight λ = 0.)

Densities can be multiplied. If s1 = s1(x)|Dx|λ1 and s2 = s2(x)|Dx|λ2 are densities of weights
λ1, λ2 respectively then s = s1 · s2 = s1(x)s2(x)|Dx|λ1+λ2 is a density of weight λ1 + λ2. We
come to the algebra F(M) = ⊕λFλ(M) of finite linear combinations of densities of arbitrary
weights. Use a formal variable t instead volume form |Dx|. Thus an arbitrary density s =
s1(x)|Dx|λ1 + · · · + sk|Dx|λk can be written as a function on x, t which is quasipolynomial on
t, s(x, t) = s1(x)t

λ1 + · · ·+sk(x)t
λk . An arbitrary density s ∈ F(M) can be identified with function∑

sr(x)t
λr on the extended manifold M̂ , which is quasipolynomial on ‘vertical‘ variable t. There

is a natural fibre bundle structure M̂ → M . Extended manifold M̂ is the frame bundle of the
determinant bundle of M , (xi, t) are local coordinates on M̂ . Changing of local coordinates is:

(xi
′

, t′) : xi
′

= xi
′

(xi), t′ = t′(xi, t) = det

(
∂xi

′

∂xi

)
t .

The fibre bundle M̂ → M can be used for studying projective geometry on M since there is
a canonical construction which assigns to an arbitrary projective connection on manifold M an
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usual affine connection on M̂ (see the last section). This affine connection on M̂ can be used for
describing the ‘projective geometry’ on the base manifold M . Such investigations can be traced to
H. Weyl, Weblen and Thomas. On the other hand we will come to additional geometrical structures

on fibre bundle M̂ → M if instead algebra of all smooth functions on extended manifold M̂ we

consider only the subalgebra of functions on M̂ , which are quasipolynomial on vertical variable
t, i.e. algebra F(M) of densities on M . This algebra can be equipped with the canonical scalar
product: If s1 = s1(x)|Dx|λ1 and s2 = s2(x)|Dx|λ2 are two densities with a compact support then

〈s1, s2〉 =





∫
M

s1(x)s2(x)|Dx| , if λ1 + λ2 = 1 ,

0 if λ1 + λ2 6= 1 .

(1)

This construction turns out to be very important tool to study geometry of differential operators on
M [2], [3]. We give short exposition of these results. Here we come to these results and formulate
new ones based on alternative approach of Kaluza-Klein-like reduction.

2. Differential operators on algebra of densities

Consider linear operator ŵ such that ŵ(s) = λs in the case if s is a density of weight λ, (s ∈ Fλ(M)).
If s1 is a density of weight λ1 and s2 is a density of weight λ2 then

ŵ(s1 · s2) = (λ1 + λ2)s1 · s2 = (ŵs1) · s2 + s1 · (ŵs2) .

Leibnitz rule is obeyed, ŵ is first order differential operator on the algebra of densities. In local

coordinates (xi, t) on M̂ , ŵ = t ∂
∂t
. A differential operator ∆̂ on algebra of densities has appearance

∆̂ = ∆̂
(
x, ∂

∂x
, t, ŵ

)
in local coordinates. An arbitrary operator ∆̂ on algebra of densities defines

the pencil of operators:
∆̂ 7→ {∆λ} : ∆λ = ∆̂

∣∣
ŵ=λ

.

E.g. the operator ∆̂ = A(ŵ)Sik∂i∂k + B(ŵ)T i∂i + C(ŵ)R on algebra F(M) defines the pencil of
operators {∆λ} : ∆λ = A(λ)Sik∂i∂k + B(λ)T i∂i + C(λ)R. Here A,B,C are polynomials on ŵ.

If for example A = 1 + ŵ, B = ŵ2 and C = 1, then ∆̂ is third order operator on the algebra of
densities, which defines the pencil of second order operators. Operators on algebra of densities can
be identified with operator pencils which depend polynomially on pencil parameter λ.

Remark 1 Here we consider only operators which do not change the weight of densities: ∆̂ =
∆̂(x, ∂

∂x
, ŵ), i.e. for corresponding pencil {∆λ}, ∆λ : Fλ(M) → Fλ(M).

Canonical scalar product (1) defines adjointness of linear operators. Linear operator ∆̂ acting

on the algebra of densities has an adjoint ∆̂∗: 〈∆̂s1, s2〉 = 〈s1, ∆̂∗s2〉. One can see that (xi)∗ = xi,
∂∗

i = −∂i and ŵ∗ = 1− ŵ.

To consider self-adjoint and anti-self-adjoint operators on extended manifold M̂ is very
illuminating for studying geometry of operators on base manifold M . (See for details Refs. [2,
3, 4, 5].)

3. First order operators and Kaluza-Klein mechanism

Consider an arbitrary first order operator K̂ such that it does not change the weight of densities (see

Remark 1) and obeys normalisation condition K̂(1) = 0. In local coordinates it has the following
appearance

K̂ = Ki(x)∂i +K0(x)ŵ .
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One can see that its adjoint is equal to K̂∗ = −Ki(x)∂i − ∂iK
i(x) +K0(x)(1− ŵ). K̂ is a vector

field on extended manifold M̂ . One can define divergence of this vector field:

div K̂ = −(K+K∗) = ∂iK
i(x)−K0(x) . (2)

Notice that the divergence is defined in spite of the absence of well-defined volume form on M̂ (see
for details Refs. [2] and [5]).

We see that vector field K̂ is divergenceless iff it is anti-self-adjoint:

K̂ = −K̂∗ ⇔ div K̂ = 0 ⇔ K̂ = Ki(x)∂i + ŵ∂iK
i(x) .

One can see that divergenceless vector field K̂ is a Lie derivative of densities along its projection,
vector field K on M . An arbitrary vector field X = Xi(x)∂i can be lifted to anti-self-adjoint

(i.e. divergenceless) vector field on extended manifold M̂ , which is nothing but Lie derivative of

densities: X 7→ L̂X such that for arbitrary s = s(x)|Dx|λ,

L̂X(s) = X̂(s) =
(
Xi(x)∂i + ŵ∂iX

i(x)
)
s(x)|Dx|λ =

(
Xi∂is(x) + λ∂iX

is(x)
)
|Dx|λ .

It is useful to consider a connection on a bundle M̂ → M . It assigns to every vector field

X = Xi(x)∂i on M its lifting, the horizontal vector field X̂hor = Xi(x)∂i + γi(x)X
i(x)ŵ on M̂ .

Connection defines derivation ∇X on algebra of densities: for s = s(x)|Dx|λ

∇X(s) = X̂hor(s) =
(
Xi(x)∂is(x) + λγi(x)X

i(x)s(x)
)
|Dx|λ . (3)

Under changing of local coordinates xi → xi
′

= xi
′

(xi) components γi of connection are
transforming in the following way:

γi′ =
∂xi

∂xi′

(
γi +

∂

∂xi
log

(
det

∂xj
′

∂xj

))
, (γi(x)|Dx| = ∇i|Dx|) .

Connection γi(x) defines divergence div γ of vector fields on M , which is equal to divergence (2) of

horizontal lifting of this vector field: div γX = div X̂hor = ∂iX
i(x)− γi(x)X

i(x).

Remark 2 Let X = Xi∂i be a projection on M of a vector field X̂ = Xi∂i+ ŵX0 on M , and X̂hor

be a horizontal lifting of X. Then X̂−X̂hor = ŵ(X0−γiX
i) is a vertical vector field and X0−γiX

i

is a scalar field.

Remark 3 A volume form ρ = ρ(x)|Dx| on M naturally defines a connection γi = −∂i log ρ(x).
A Riemannian metric G = gikdx

idxk on M naturally defines a volume form ρ =
√
det g|Dx|. The

corresponding connection γi = −Γk
ik, where Γi

km are Cristoffel symbols of Levi-Civita connection of
the metric. In this case div γ is a standard divergence operator (with respect to a volume form).

4. Second order operators and Kaluza-Klein reduction

Let ∆̂ be an arbitrary second order operator on algebra of densities F(M):

∆̂ = Sik(x)∂i∂k + 2ŵBi(x)∂i + ŵ2C(x)︸ ︷︷ ︸
second order derivatives

+ Di(x)∂i + ŵE(x)︸ ︷︷ ︸
first order derivatives

+F (x) . (4)

(As always we consider only operators which do not change weight of densities (see remark 1).)
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Principal symbol of this operator is

Ŝ =

(
Sik Bi

Bk C

)
, (in coordinates xi, x0 = log t) .

Ŝ is a contravariant symmetric tensor field on the extended manifold M̂ . ‘Space components’ Sik

of the tensor field Ŝ are components of symmetric contravariant tensor field on M . Operator ∆̂
defines a pencil of second order operators {∆λ}, ∆λ = Sik∂i∂k + . . . , and all these operators have
the same principal symbol Sik.

Put normalisation condition F = ∆̂(1) = 0 and consider the operator which is adjoint to operator
(4):

∆̂∗ = ∂k∂i

(
Sik . . .

)
− ŵ∗∂i

(
2Bi + (. . . )

)
+ (ŵ∗)2 (C . . . )− ∂i

(
Di . . .

)
+ ŵ∗E , (ŵ∗ = 1− ŵ) .

The condition that operator ∆̂ is self-adjoint, ∆̂∗ = ∆̂ implies that

∆̂ = Sik∂i∂k + ∂kS
ki∂i + (2ŵ − 1)Bi∂i + ŵ∂iB

i + ŵ (ŵ − 1)C . (5)

Thus self-adjoint second order operator on algebra of densities, which obeys normalisation condition
∆̂(1) = 0 is uniquely defined by its symbol.

The geometry of operator (5) was studied in detail in articles [2, 3, 4]. Here we present and
analyze these results, using Kaluza-Klein-like mechanism.

Kaluza-Klein mechanism defines a connection (gauge field) and Riemannian metric on a base

manifold through Riemannian metric on a total space of fibre bundle M̂ → M . Connection, i.e.
the distribution of horizontal hyperplanes (subspaces which are transversal to the fibres) is defined
by the condition that these hyperplanes are orthogonal to the fibres with respect to Riemannian
metric in the bundle space.

One can slightly alter this mechanism. Contravariant tensor field Ŝ, principal symbol of operator

(5) maps 1-forms (covectors) to vectors on M̂ . Consider the following Kaluza-Klein-like mechanism:

take an arbitrary 1-form Ω on M̂ such that Ω(ŵ) 6= 0, i.e. Ω is proportional to form dx0 + . . .

(x0 = log t), and the following condition is obeyed: vector field ŜΩ is proportional to vertical
vector field ŵ (ŵ = t ∂

∂t
= ∂

∂x0 ) . This means that for 1-form Ω = a(x)(dx0 − γk(x)dx
k) the

following condition holds:
(
Sik Bi

Bk C

)(
−γk
1

)
is proportional to vector

(
0
1

)
. (6)

This condition canonically defines distribution of horizontal hyperplanes in M̂ , which are sets of
vectors which annihilate the form Ω. (One can take ŜΩ = 0 in the case if Ŝ is degenerate.) Every
vector field X = Xi(x)(x)∂i on the base M can be lifted to horizontal vector field which annihilates
the connection form Ω (see also equation (3)). This construction works if condition (6) is obeyed,
i.e. in the case if the equation

Sik(x)γk(x) = Bi(x) (7)

has a solution. In this case second order operator (4) via its principal symbol Ŝ defines a connection
γk. In the case where Sik is non-degenerate, Eq. (7) has a unique solution. In this case operator
defines uniquely canonical connection and Riemannian metric on the base.

The field Bi(x) = Sik(x)γk(x) can be considered as an upper connection. It follows from (6)
that in this case C −Biγi is a scalar and C is related with Brans-Dicke function.

In general case if the condition (7) is not obeyed then more detailed analysis shows thatBi−SikΓk

is a vector field and C − 2BiΓi + SikΓiΓk is a scalar, where Γi is an arbitrary connection.
The importance of operator (5) is defined by the following uniqueness Theorem:
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Theorem 1 Let ∆ be second order operator acting on densities of weight λ0, where λ0 6= 0, 1, 1/2.

Then there exists a unique self-adjoint operator ∆̂ (∆̂∗ = ∆̂) which obeys the following conditions

• ∆̂
∣∣
ŵ=λ0

= ∆,

• normalisation condition ∆̂(1) = 0.

In other words there exists unique self-adjoint normalised pencil of second order operators which
passes through a given operator.

This Theorem was formulated and proved in [2] (see also [3]).

Example 4.1 Consider second order operator ∆λ0
= LX ◦ LY, where X,Y are arbitrary vector

fields, LX,LY are Lie derivatives of densities of weight λ0 along vector fields X,Y respectively.
Construct the following operator on algebra of densities:

∆̂ =
1

2

(
L̂XL̂Y + L̂YL̂X

)
+

1

2

(
2ŵ − 1

2λ0 − 1

)(
L̂XL̂Y − L̂YL̂X

)
.

This operator is obviously self-adjoint operator and it passes through operator ∆λ0
. One can see

that it is equal to

∆̂ = L̂XL̂Y +

(
ŵ − λ0

2λ0 − 1

)
L̂[X,Y] .

Let ∆λ0
= Aij∂i∂j +Ai∂i+A be an arbitrary second order operator acting on space of densities

of a given weight λ0, (λ0 6= 0, 1/2, 1). Then we see that the self-adjoint operator (5) passes via the
operator ∆λ0

if for upper connection Bi and Brans-Dicke function C

Bi =
Ai − ∂kA

ki

2λ0 − 1
, C =

A

λ0(λ0 − 1)
− ∂iA

i − ∂i∂kA
ki

(λ0 − 1)(2λ0 − 1)
.

The upper connection Bi is induced by a connection γi (B
i = Aikγk) iff equation (7) has a solution

(for Sik = Aik). The condition (7) defines this special property of second order operators on
densities. It is interesting to analyze its geometrical meaning.

5. Thomas bundle and projective geometry

The canonical constructions studied in the previous sections were successfully performed since we

consider not the algebra of all functions on extended manifold M̂ , but only functions which are
quasipolynomial on vertical variable t, since scalar product (1) is not well-defined on algebra of all

(smooth) functions on x, t. Nevertheless in general case for fibre bundle M̂ → M there exists the
remarkable construction which assigns to projective class of connections on M the affine connection

on M̂ . This construction is due to T. Y. Thomas [6] (see also Refs. [7, 8]). The bundle M̂ → M
sometimes is called Thomas bundle. Now we sketch this construction.

We say that two symmetric affine connections ∇ and ∇̃ on manifold M belong to the same
projective class [∇] = [∇̃] if

∇̃ − ∇ = Γ̃i
km − Γi

km = tkδ
i
m + tmδik , (ti is covector) ,

where Γ̃i
km and Γi

km are Christoffel symbols of connections ∇̃ and ∇ respectively. Equivalence class
of symmetric connections is a projective connection. (A projective connection in particular defines
non-parametrised geodesics: two symmetric affine connection belong to the same class iff they have
the same non-parameterised geodesics.)
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For affine connection ∇ on n-dimensional manifold M with Christoffel symbols Γi
km one can

consider symbols

Πi
km(∇) = Πi

km = Γi
km +

1

n+ 1

(
γkδ

i
m + γmδik

)
, (8)

where γi = −Γk
ik define connection on densities on M (see also remark 3). Two symmetric

connections ∇, ∇̃ belong to the same projective class iff Πi
km(∇) = Πi

km(∇̃).
Let [∇] be a projective class of symmetric connections on n-dimensional manifold M . Then

Thomas construction assigns to this projective class [∇] the symmetric affine connection ∇̂ on the

extended manifold M̂ . with following Christoffel symbols

Γ̂i
km = Πi

km, Γ̂0
km =

1

n+ 1
(∂rΠ

r
km −Πr

skΠ
s
rm) , Γ̂i

k0 = − δik
n+ 1

, Γ̂i
00 = Γ̂0

i0 = 0, Γ̂0
00 = − 1

n+ 1
.

Here Πi
km are symbols (8) corresponding to Christoffel symbols of a connection in the class [∇].

(We use local coordinates (xi, x0) = (xi, log t)) in the extended space.)
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