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Abstract. We discuss the features of the Casimir effect for two parallel plates in background
of de Sitter and anti-de Sitter spacetimes. A massive scalar field with general curvature coupling
parameter obeying Robin boundary conditions on the plates is considered. The corresponding
results are compared with those in Minkowski spacetime.

1. Introduction
The Casimir effect (for a review see [1]) is now known to be common to systems of very different
kinds, involving fluctuating quantities on which external boundary conditions are imposed. It
can have important implications on all scales, from subnuclear to cosmological. An interesting
topic in the investigations of the Casimir effect is its explicit dependence on the geometry of
background spacetime. The relevant information is encoded in the vacuum fluctuations spectrum
and analytic solutions can be found for highly symmetric geometries only. In the present paper,
we will discuss the Casimir stresses on parallel plates for a scalar field in background of maximally
symmetric spaces with zero, positive and negative curvature corresponding to Minkowski, de
Sitter (dS) and anti-de Sitter (AdS) spacetimes, respectively.

2. Casimir forces in Minkowski spacetime
Consider a scalar field ϕ(x) with the curvature coupling parameter ξ. The corresponding field
equation has the form

(∇l∇l + m2 + ξR)ϕ = 0, (1)

where ∇l is the covariant derivative operator and R is the Ricci scalar of the background
spacetime. The values of the curvature coupling parameter ξ = 0 and ξ = ξD ≡ (D − 1)/4D,
with D being the number of spatial dimensions, correspond to the most important special cases
of minimally and conformally coupled fields. The background geometry is described by the line
element

ds2 = R2ηikdzidzk = R2[dt2 −
∑D

i=1
(dzi)2], (2)

where ηik is the Minkowskian metric tensor. We will consider special cases R = 1 (Minkowski
spacetime), R = α/|t| (dS spacetime) and R = α/zD (AdS spacetime).
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Our main interest is the Casimir forces in the geometry of two infinite, parallel plates located
at zD = aj , j = 1, 2. On the plates the field obeys Robin boundary conditions (BCs)

(1 + βjn
l
(j)∂l)ϕ(x) = 0, zD = aj , (3)

with nl
(j) being the inward-pointing unit normal to the boundary at zD = aj (with respect to

the region under consideration). Robin type conditions are an extension of Dirichlet (βj = 0)
and Neumann (βj = ∞) BCs and appear in a variety of situations, including the considerations
of vacuum effects for a confined charged scalar field in external fields, spinor and gauge field
theories, quantum gravity and supergravity. The Robin BCs may, in some geometries, be useful
for depicting the finite penetration of the field into the boundary with the ’skin-depth’ parameter
related to the Robin coefficient. For the region between the plates one has nl

(j) = (−1)j−1δl
D/Rj ,

where Rj = R|zD=aj
. In this case the BCs are written in the form (1 + (−1)j−1bj∂D)ϕ(x) = 0,

with bj = βj/Rj . In the discussion below we assume that bj = const. The imposition of BCs
leads to a modification of the spectrum for vacuum fluctuations of quantum fields and, as a
result, to the changes in the vacuum expectation values (VEVs) for physical quantities. In
particular, forces arise acting on constraining boundaries.

First we consider the case of the Minkowski spacetime corresponding to R = 1 in (2). The
VEV of the energy-momentum tensor, 〈T k

i 〉 = 〈0|T k
i |0〉, has been investigated in [2]. The normal

force acting per unit surface of the plates, p, is determined by the VEV of the normal stress
〈TD

D 〉: p = −〈TD
D 〉. This stress is uniform in the region between the plates and vanishes in the

regions zD < 0 and zD > 0 (note that, in general, this is not the case for the energy density and
parallel stresses). The Casimir force per unit area (the vacuum effective pressure) is given by

p = −2(4π)−D/2

Γ(D/2)

∫ ∞

m
dt

t2(t2 − m2)D/2−1

β1t−1
β1t+1

β2t−1
β2t+1e2at − 1

. (4)

The force is attractive/repulsive for negative/positive values of p. Note that the Casimir force
is the same for both plates and it does not depend on the curvature coupling parameter. The
vacuum densities and the Casimir forces for a massive scalar field, subject to Robin boundary
conditions on two codimension-one parallel plates, located on a (D+1)-dimensional background
spacetime with an arbitrary internal space have been investigated in [3]. For Dirichlet and
Neumann scalars the forces are attractive: pD = pN < 0. For Dirichlet BC on one plate and the
Neumann one on the other, the force is repulsive: pDN < 0. For a massless field one gets

pD = p0 = − DζR(D + 1)
(4π)(D+1)/2aD+1

Γ
(

D + 1
2

)
, pDN = −(1 − 2−D)p0, (5)

with ζR(x) being the Riemann zeta function.
For small separations between the plates, ma � 1, a � |βj | , to the leading order one has

p ≈ p0. The same is the case for Dirichlet BCs on both plates. For Dirichlet BC on one plate
and non-Dirichlet BC on the other one has p ≈ pDN. At large separations, ma 	 1, a 	 |βj |,
in the leading order we get p ≈ −mD/2+1(4πa)−D/2e−2ma for a massive field and p ≈ p0 for
a massless field. The corresponding forces are attractive. For the Neumann BC on one plate
and the non-Neumann BC on the other, at large distances we have p ≈ mD/2+1(4πa)−D/2e−2ma

and p ≈ −(1 − 2−D)p0, for massive and massless fields, respectively. In this case the forces are
repulsive. As we see, for Dirichlet BC on one plate and non-Dirichlet BC on the other the forces
are repulsive at small separations and attractive at large separations. At some intermediate
separation the force vanishes and this equilibrium position is stable. For Neumann BC on one
plate and non-Neumann BC on the other the forces are attractive at small separations and
repulsive at large separations. In this case the equilibrium position is unstable.
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The results given above can be generalized for non-local BCs on the parallel plates [4]:

nl
(j)∂lϕ(x) +

∫
dz′‖ fj(|z‖ − z′‖|)ϕ(x′) = 0, zD = aj , (6)

where z‖ = (z1, . . . , zD−1). These BCs state that the normal derivative at a given point depends
on the values of the field at other points on the boundary. The kernel functions fj determine
the properties of the boundaries. The vacuum force acting per unit surface of the plate:

p = −22−Dπ−(D+1)/2

Γ((D − 1)/2)

∫ ∞

0
du

∫ ∞
√

u2+m2

uD−2t2dt√
t2 − u2 − m2

[
(t − F1(u))(t + F2(u))
(t + F1(u))(t − F2(u))

e2at − 1
]−1

, (7)

where

Fj(x) =
(2π)(D−1)/2

x(D−3)/2

∫ ∞

0
duu(D−1)/2fj(u)J(D−3)/2(ux), (8)

and Jν(z) is the Bessel function. Examples of functions fj(z) have been considered in [12].

3. Casimir Forces in dS spacetime
In this section we consider the Casimir forces in dS spacetime. This spacetime is among the
most popular backgrounds in gravitational physics. It is the maximally symmetric solution
of Einstein’s equation with a positive cosmological constant and due to this high symmetry
numerous physical problems are exactly solvable on this background. A better understanding
of physical effects in this background could serve as a handle to deal with more complicated
geometries. De Sitter spacetime also plays an important role in most inflationary models.
More recently astronomical observations of high redshift supernovae, galaxy clusters and cosmic
microwave background indicate that at the present epoch the universe is accelerating and can
be well approximated by a world with a positive cosmological constant.

In the case of dS spacetime described in inflationary coordinates, the line element is given by
(2) with the function R = α/|t|, where t is the conformal time coordinate, −∞ < t < 0. The
latter is related to the synchronous time ts by t = −αe−ts/α and R = ets/α. For the Ricci scalar
one has R = D(D + 1)/α2. In the construction of a quantum field theory in a fixed classical
gravitational background, the choice of the vacuum state is among the most important steps.
dS spacetime is a maximally symmetric, and it is natural to choose a vacuum state having the
same symmetry. In fact, there exists a one-parameter family of maximally symmetric quantum
states. Here we will assume that the field is prepared in the dS-invariant Bunch-Davies vacuum
state [5]. Among the set of dS-invariant quantum states, the Bunch-Davies vacuum is the only
one for which the ultraviolet behavior of the two-point functions is the same as in Minkowski
spacetime.

The VEVs of the field squared and the energy-momentum tensor in the geometry of parallel
plates in background of dS spacetime have been investigated in [6, 7]. The vacuum force acting
per unit surface of the plate at zD = aj is determined by the D

D-component of the vacuum energy-
momentum tensor evaluated at this point. For the region between the plates, the corresponding
effective pressures are presented as p(j) = p

(j)
1 + p

(j)
(int), j = 1, 2. The first term, p

(j)
1 , is the

pressure for a single plate at zD = aj , when the second plate is absent. This term is divergent
due to surface divergences in the subtracted VEVs and needs additional renormalization. The
term p

(j)
(int) is the pressure induced by the second plate, and can be termed as an interaction

force. This contribution is finite for all nonzero distances between the plates. In the regions
zD < a1 and zD > a2 we have p(j) = p

(j)
1 . As a result, the contributions to the vacuum force

coming from the term p
(j)
1 are the same from the left and from the right sides of the plate, so

there is no net contribution to the effective force.
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The interaction force on the plate at zD = aj is given by the expression [7]:

p
(j)
(int) = − 8(4π)−(D+1)/2

Γ((D − 1)/2)αD+1

∫ ∞

0
dy y1−D

∫ ∞

y
dx

x2(x2 − y2)(D−3)/2

b1x/η−1
b1x/η+1

b2x/η−1
b2x/η+1e2ax/η − 1

×
[

2 (bj/η)2 Gν(y)
(bjx/η)2 − 1

+ Fν(y)

]
, (9)

where η = |t|, and we introduced the notations

Fν(y) = yD [Iν(y) + I−ν(y)]Kν(y), ν =
[
D2/4 − D(D + 1)ξ − m2α2

]1/2
,

Gν(y) =
{
(ξ − 1/4) y2∂2

y + [ξ(2 − D) + (D − 1)/4] y∂y − ξD
}

Fν(y). (10)

In (10), Iν(y) and Kν(y) are the modified Bessel functions. The time dependence of the forces
appears in the form a/η and bj/η. Note that the ratio a/η is the proper distance between the
plates measured in units of dS curvature radius α. Unlike to the Minkowskian case, for β1 �= β2

the Casimir forces acting on the left and on the right plates are different. For large values of α, to
the leading order, the corresponding result for the geometry of two parallel plates in Minkowski
spacetime is obtained.

In the special cases of Dirichlet and of Neumann BCs one finds:

p
(D)
(int) = − 4α−D−1

(2π)D/2+1

∞∑
n=1

∫ ∞

0
dy yFν(y)

[
(D − 1)fD/2(yun) + fD/2−1(yun)

]
, (11)

p
(N)
(int) = p

(D)
(int) −

8α−D−1

(2π)D/2+1

∞∑
n=1

∫ ∞

0
dy

Gν(y)
y

fD/2−1(yun), un = 2na/η, (12)

where fμ(x) = Kμ(x)/xμ. For 0 � ν < 1 the integrand in the expression for p
(D)
(int) is positive

which corresponds to an attractive force for all separations.
In the limit of small proper distances between the plates, a/η � 1, the effects induced by

the curvature of dS spacetime are subdominant and to leading order we find the result for the
Minkowski spacetime, given in the previous section, with the replacement a → αa/η.

In considering the large distance asymptotics, corresponding to a/η 	 1, the cases of real and
imaginary ν must be studied separately. For positive values of ν, one has p

(j)
(int) ∝ (a/η)2ν−D−2

for non-Neumann BC on the plate at zD = aj (|bj | < ∞) and p
(j)
(int) ∝ (a/η)2ν−D for Neumann

BC (bj = ∞). In the case of non-Neumann BC we have assumed that |bj |/a � 1. For positive
values of ν, at large distances the ratio of the Casimir forces acting on the plate with Neumann
and non-Neumann BCs is of the order (a/η)2. In neither of these cases does the leading order
term in the force depend on the specific value of Robin coefficient in the BC on the second
plate. For Dirichlet BC on the plate at zD = aj (bj = 0), at large separations the Casimir force
acting on that plate is repulsive (attractive) for Neumann (non-Neumann) BCs on the other
plate. The nature of the force acting on the plate with Neumann BC can be either repulsive or
attractive, in function of the curvature coupling parameter and of the field mass. For minimally
and conformally coupled massive scalar fields the corresponding force is attractive (repulsive) for
Neumann (non-Neumann) BC on the second plate. For imaginary ν, the leading order terms at
large separations between the plates are in the form p

(j)
(int) ∝ (a/η)−D−2 cos[2|ν| ln(2a/η) + φ(j)]

for |bj | < ∞, and p
(j)
(int) ∝ (a/η)−D cos[2|ν| ln(2a/η) + φN

(j)] for bj = ∞ (Neumann BC). In this
case the decay of the vacuum forces is oscillatory.

2nd International Symposium on the Modern Physics of Compact Stars and Relativistic Gravity IOP Publishing
Journal of Physics: Conference Series 496 (2014) 012029 doi:10.1088/1742-6596/496/1/012029

4



From the discussion given above it follows that for proper distances between the plates larger
than the curvature radius of the dS spacetime, αa/η � α, the gravitational field essentially
changes the behavior of the Casimir forces compared with the case of the plates in Minkowski
spacetime. The forces may become repulsive at large separations between the plates. Recall
that, for the geometry of parallel plates on the background of Minkowski spacetime, the only
case with repulsive Casimir forces at large distances corresponds to Neumann BC on one plate
and non-Neumann BC on the other. A remarkable feature of the influence of the gravitational
field is the oscillatory behavior of the Casimir forces at large distances, which appears in the
case of imaginary ν. In this case, the values of the plate distance yielding zero Casimir force
correspond to equilibrium positions. Among them, the positions with negative derivative of the
force with respect to the distance are locally stable. At large separations between the plates the
decay of the Casimir forces as functions of the distance is power-law for both cases of massive
and massless fields. Recall that, in Minkowski spacetime the corresponding Casimir forces are
exponentially suppressed by the factor exp(−2ma) for a massive filed.

4. AdS spacetime
Now let us turn to the AdS spacetime as a background geometry. Much of the earlier interest
in this geometry was motivated by questions of principal nature, mainly related with the
quantization of fields on curved backgrounds. Further interest in this subject arose from the
discovery that the AdS spacetime generically arises as a ground state in extended supergravity
and string theories, what is again potentially most important. In recent developments of the
topic, the AdS geometry is an arena for two classes of models. The first is the AdS/CFT
correspondence, which relates string theories or supergravity in the AdS bulk with a conformal
field theory living on its boundary. The second class of models with the AdS spacetime as
background geometry is a realization of the braneworld scenario with large extra dimensions
and provides a solution to the hierarchy problem which arises between the gravitational and
electroweak mass scales.

For AdS spacetime described in Poincare coordinates the line element is given by (2) with
R = α/zD and for the Ricci scalar one has R = −D(D + 1)/α2. The coordinate zD is related
to the coordinate y, measuring the proper distance from the plates, by zD = αey/α. The VEVs
of the field squared and the energy-momentum tensor in the geometry of two parallel plates
have been investigated in [8] (see also [9] for the case of a conformally coupled massless field).
The corresponding effective pressures on the plates can be presented as a sum of two terms:
p(j) = p

(j)
1 + p

(j)
(int), j = 1, 2. The first term on the right is the pressure for a single plate at

zD = aj when the second plate is absent. This term is divergent due to the surface divergences
in the VEVs. For the interaction force per unit surface of the plate at zD = aj one has:

p
(j)
(int) =

α−D−1aD
j

(4π)D/2Γ (D/2)

∫ ∞

0
dxxD−1Cjμ(xa1, xa2)

×(x2a2
j − μ2 + 2m2α2)B2

j − D(4ξ − 1)AjBj − A2
j

K̄
(1)
μ (xa1)Ī

(2)
μ (xa2) − K̄

(2)
μ (xa2)Ī

(1)
μ (xa1)

. (13)

where μ =
√

D2/4 − D(D + 1)ξ + m2α2 and we have introduced the functions

C1μ(u, v) = K̄(2)
μ (v)/K̄(1)

μ (u), C2μ(u, v) = Ī(1)
μ (u)/Ī(2)

μ (v), (14)

The barred notations for j = 1, 2 are defined as

F̄ (j)(x) = AjF (x) + BjxF ′(x), Aj = 1 + (−1)j−1(βj/aj)D/2, Bj = (−1)j−1βj/aj . (15)
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The parameter μ must be real to ensure stability [10]. For given βj/aj , j = 1, 2, the interaction
forces depend on a1 and a2 in the form of the ratio a2/a1, which is related to the proper distance
between the plates by a = α ln(a2/a1). As it is seen from (13), the forces acting on the plates are
not symmetric under the interchange of the brane indices. It can be seen that p

(j)
(int) is negative

for Dirichlet scalar and for a scalar with A1 = A2 = 0. The corresponding interaction forces are
attractive for all values of the interplate distance.

At small separations compared with the AdS curvature radius, a � α, the leading terms
in the asymptotic expansion of the forces concides with the expressions for the plates in the
Minkowski bulk. At large separations, a 	 α (this limit is realized in the Randall-Sundrum
model), one has p

(1)
(int) ∝ e−(D+2μ)a/α and p

(2)
(int) ∝ e−2μa/α. Note that in AdS spacetime the

exponential suppression of the forces with the separation between the plates takes place for
a massless fields as well. This is in contrast with the cases of Minkowski and dS spacetimes.
In dependence of the values for the coefficients in the boundary conditions, the corresponding
forces can be either attractive or repulsive. The expressions of the forces for an untwisted scalar
in the (D + 1)-dimensional Randall-Sundrum braneworld model are obtained from (13) with an
additional factor 1/2 and with

A1/B1 = [D(1 − 4ξ) − αc1] /2, A2/B2 = [D(1 − 4ξ) + αc2] /2, (16)

with cj being the brane mass term on the brane zD = aj . For a twisted scalar one has Dirchlet
BCs on both branes.

The VEV of the surface energy-momentum tensor in the geometry of two parallel plates on
AdS bulk is evaluated in [11]. It has been shown that in the Randall-Sundrum braneworld
model, for the interbrane distances solving the hierarchy problem, the cosmological constant
generated on the visible brane is of the right order of magnitude with the value suggested by the
cosmological observations. The Casimir densities and forces in AdS spacetime with a warped
internal compact space have been discussed in [12, 13].

5. Conclusion
From the analysis carried out above, it follows that the curvature of the background spacetime
decisively influences the behavior of the Casimir forces at distances larger than the curvature
scale. As we have seen, in dS spacetime the decay of the forces at large separations between
the plates is power-law. This is quite remarkable and clearly in contrast with the corresponding
features of the same problem in Minkowski and AdS spacetimes.
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research project No. SCS 13-1C040.
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