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Abstract. To explain the accelerated expansion of the universe, models with interacting dark
components (dark energy and dark matter) have been considered recently in the literature.
Generally, the dark energy component is physically interpreted as the vacuum energy of the all
fields that fill the universe. As the other side of the same coin, the influence of the vacuum
energy on the gravitational collapse is of great interest. We study such collapse adopting
different parameterizations for the evolution of the vacuum energy. We discuss the homogeneous
collapsing star fluid, that interacts with a vacuum energy component, using the stiff matter
case as example. We conclude this work with a discussion of the Cahill-McVittie mass for the
collapsed object.

1. Introduction

In recent years there have been a number of important discoveries relevant to the fields of
cosmology and relativistic astrophysics. A couple months ago the Nobel prize for 2013 was
awarded for the prediction and discovery of the Higgs boson. The Higgs boson has a special
place in the inflationary model of the early universe. The research of Vera Rubin, which
predicted the presence of dark matter in the galaxies through the study of the orbital velocities
of the interstellar matter in the galaxies, has been substantiated through the discovery of the
accelerated expansion of the universe. Indeed, the data from distant supernovae that took place
at two different times provide the evidence for the accelerated expansion of the universe.

Within the framework of general relativity, we must provide, quite generally, a negative
pressure to the cosmic fluid in order to explain the increase of the expansion velocity of
the universe. Among the several models that can explain the accelerated expansion of the
universe the most popular one is the Λ-CDM (cosmological constant plus cold dark matter)
model. Alternative models consider a time-dependent cosmological term, in order to avoid the
discrepancy between the values of acceleration measured by the cosmological observations and
those estimated from the quantum field theory. Independent of the details of these models, the
cosmological term in the framework of the general relativity theory is generally interpreted as
the vacuum energy of the all fields that fill the universe.

We view the cosmic expansion and the gravitational collapse as different sides of the same
coin. From this standpoint, a study of the influence of the vacuum energy on the gravitational
collapse of a fluid star emerges naturally. Thus, in this contribution, we study the final fate of a
collapsing star in a model which contains vacuum energy and a matter fluid. We will not specify
the matter components individually. Apart from this, we will find the collapsed mass using the
Cahill-McVittie definition.
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2. Basic equations of the model

In this study we assume that the space-time is homogeneous and isotropic and is governed by
the metric

ds2 = dt2 −R2
(

dr2 + r2dΩ2
)

, (1)

where dΩ2 ≡ dθ2 + sin2 θdϕ2, and the function R depends only of the time. In this aspect we
follow the pioneering collapse model described by Oppenheimer [1].

The exterior star space-time does not have a direct influence on the collapse process. Hence,
the interior space-time of the star is the important geometric object of our study, which is
governed by the metric given by Eq. (1).

The appearance of the apparent horizon is the main characteristics that decides on the final
outcome of the collapse process which could be either a black hole or a naked singularity. If the
apparent horizon is formed before the singularity, the final fate of the collapse process is a black
hole. In the opposite case we have the formation of a naked singularity.

Let us begin this work by considering the Einstein’s field equations. For a fluid star with
pressure and density and for the space-time described by the metric above, they can be written
as:

Gµν =
8πG

c4

[

Tµν +
Λ

8πG
gµν

]

, (2)

where Gµν is the Einstein tensor, Tµν is the energy-momentum tensor, G is the newtonian
gravitational constant, and c is the light velocity. On the other hand, according to the

Bianchi identities the covariant derivative of the Einstein tensor is identically null (Gαβ
;β = 0).

Consequently, the Einstein field equations can be written in the form of a conservation equation

uµT
µν
;ν = −uµ

(

Λgµν

8πG

)

;ν
, (3)

where the coupling of the stellar fluid to the vacuum component assumes the form

ρ̇f + 3
Ṙ

R
(ρf + Pf ) = −ρ̇v, (4)

where uµ, ρf , ρv and Pf are the four-velocity of an element of the star fluid, the energy density
of the material component, the vacuum energy density (ρΛ), and the fluid’s material pressure,
respectively. For the energy momentum tensor of the fluid we adopt the popular perfect fluid
from

Tµν = (ρ+ P )uµuν − Pgµν , (5)

and we assume the usual form of the equation of state for the vacuum component PΛ = −ρΛ.
This form was introduced by Y. Zeldovich [2] in the discussion of the properties of a Higgs
field. An interesting discussion of the inclusion of the Higgs field into the theory of elementary
particles and the vacuum energy can be found in Ref. [3].

At this point we can write Einstein’s field equations in the following form

8πG

c4
ρf + Λ(t) = 3H2, (6)

8πG

c4
pf − Λ (t) = −2Ḣ − 3H2 , (7)

where H is the Hubble function (H = Ṙ/R).
To integrate Einstein’s field equations we need to establish an expression for the vacuum

component. This is in full analogy to the Λ(t)-CDM cosmological models, which require a law
for the decay of the vacuum.
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3. Gravitational collapse and the vacuum energy

There are a large number of models in the literature, which propose different Λ(t) decay laws,
see for example Refs. [4], [5], and citations therein. In this work, we begin our study by using
the law proposed by Wang and Meng [6]. The decay law for the vacuum energy that interacts
with the matter fluid, given by Eq. (4), is model independent. The authors assume that the
energy density of the matter component will dilute at a rate that is different from the usual
one ρf = ρf0R

−3, namely ρf = ρf0R
−3+ǫ. The parameter ǫ represents the deviation from the

standard case, where the interaction between the matter fluid and the vacuum energy does not
exist. In some sense, this assumption is independent of the adopted model, but in several cases it
can mimic a specific model. For example, substituting for the parameter ǫ = 3β, we recover the
homogeneous and isotropic collapse of dust, where the decaying vacuum energy is proportional
to the square of Hubble function. This model was studied in Ref. [7]. The relation between
the approach adopted by Wang and Meng and the model with Λ-term which depends on the
square of the Hubble function can be see by integrating the energy conservation equation, given
by Eq. (4), assuming that the matter fluid and the vacuum energy components have identical
functional dependences.

In this brief study, we will exemplify the collapse process, using the equation of state Pf = ρf ,
which corresponds to the “stiff” matter. Naturally, this equation of state is more realistic than
that of the dust fluid form the point of view of the collapse process. Hence, redefining the
parameter ǫ = 6β− 3, we obtain the collapse process for the stiff matter case, with the decay of
the vacuum energy proportional to the square of the Hubble function, namely Λ = 3βH2.

With this dependence for the vacuum energy density, and using the Einstein field equations,
a direct integration gives

R(t) = Ri[3(1− β)Hi(tc − t)]
1

3(1−β) , (8)

where tc is the collapse time and we used the initial conditions R(t = 0) = Ri, H(t = 0) = −Hi.
In the Fig. 1 we display the influence of the vacuum component on the scale factor. We can
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Figure 1. The evolution of the scale factor for stiff matter. We consider different values for the
β-parameter. Note the interesting change of concavity that occurs at β = 2/3. The concavity
is linked to the second derivative of the scale factor and it correspond to the acceleration of the
fall of comoving fluid element.

write an expression for the collapse time, using the scale factor above and recalling that we are
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dealing with stiff matter case, in the following form

tc =
H−1

i

3(1− β)
. (9)

Next we ask what is in the final stage of the collapse process - a black hole or a naked
singularity? To answer this question we look for the apparent horizon formation moment, that
are space-like surfaces with future pointing towards the converging null geodesics on both sides
of the surface [8]. If the apparent horizon dresses the singularity we have the formation of a black
hole. If the apparent horizon is formed after the singularity is reached, we have the appearance
of a naked singularity (see Fig. 2).

The condition for the appearance of the apparent horizon is given by [8]

K,αK,βg
αβ =

(

rṘ
)2

− 1 = 0 , (10)

where (),x = ∂
∂x and K(t, r) = rR(t).

Since initially the fluid star is not trapped the condition

K,αK,βg
αβ =

[

rṘ (ti)
]2

− 1 < 0 , (11)

must be obeyed, which implies that 0 < KiHi < 1.
Finally, to calculate the collapsed mass we use the Cahill-McVittie definition [9], which is

given by

m(t, r) =
1

2
K

(

1 +K,αK,βg
αβ

)

=
1

2
KK̇2 . (12)

Summarizing, the apparent horizon condition, which is given by Eq. (10), and the mass function
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Figure 2. Ratio between the apparent horizon appearance moment and the collapse time for
stiff matter. In the considered interval of the β-parameter the cosmic censorship conjecture is
valid and the singularity is dressed. Hence, the final fate of the collapse process is a black hole.
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for the stiff matter, for a homogeneous and isotropic collapse, are given by:

K̇ = KiHi [1− 3(1− β)HitAH ]
3β−2
3(1−β) = 1, (13)

m(r, t) =
1

2
K3

i H
2
i {1− 3(1− β)Hit}

2β−1
1−β , (14)

where tAH is the apparent horizon formation moment:

tAH =
Hi

−1

3(1− β)

[

1− (KiHi)
3(1−β)
2−3β

]

, (15)

or equivalently [see Eq. (9)]
tAH

tc
=

[

1− (KiHi)
3(1−β)
2−3β

]

. (16)

Now we turn to the determination of the collapsed mass. The total collapsed mass can be
defined through the value of the mass at the moment of formation of the apparent horizon (tAH).
In other words, the collapsed mass is truly the upper limit of the matter that can be accumulated
inside the surface determined by the apparent horizon. Therefore, we write the expression for
the collapsed mass as

M(τAH) =
1

2
K

3/2
i H

1/2
i (KiHi)

3β/2
2−3β , (17)

where Ms(τAH) = 1
2
K

3/2
i H

1/2
i is the mass of a pure stiff fluid (fluid without interaction with the

vacuum energy component, that is β = 0). The expression above can be obtained by substituting
Eq. (15) into Eq. (14).
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Figure 3. Collapsed mass of the black hole formed. We display the ratio between the mass
of the black hole formed and the mass of the pure stiff fluid (without influence of the vacuum
component). In the interval considered for the β-parameter the cosmic censorship conjecture
remains valid. This is also seen in the graph for the apparent horizon moment (Fig. 2). We
adopt the mass definition by Cahill-McVittie. The mass of the black hole formed diminishes
with increase of the vacuum energy.
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4. Final remarks

We discussed the influence of the vacuum energy on the gravitational collapse of a stiff fluid.
We begun the discussion by adopting an approach which is analogous to the one adopted in
the work of Wang and Meng [6]. However, because the parameter that represents the deviation
from the standard case (which is the case without the influence of the vacuum energy and with
null pressure) can mimic several laws for the cosmological term, we were able to find the relation
between the Wang-Meng model and the model which has the Λ-term proportional to the square
of the Hubble function.

For the stiff matter case, we establish the value for the β-parameter for which the cosmic
censorship conjecture is valid, namely β = 2/3. This value appears in the graph for the scale
factor (Fig. 1), where we observed that the change of the concavity of the graph is related to
the acceleration of the fall of the comoving fluid element. In the graph for the apparent horizon
formation condition (Fig. 2) we see that for β > 2/3 the singularity is not dressed.

Finally, in the graph for the black hole mass (Fig. 3), we note that for β = 2/3 we can obtain
a black hole with null mass, that is a consequence of the inclusion in the energy momentum
tensor of the vacuum component, and more specifically, of the vacuum pressure. Note that,
null concavity is attained at the same value of the β-parameter as in the graph for the scale
factor. Naturally, the relation between both is an old acquaintance of ours: the Newton’s second
law that relates the mass and acceleration. The statements above can be made more clear by
rewriting the Einstein field equations as

R̈

R
= −

4πG

c4
(ρ+ 3P ) .

This expression is null for stiff matter and β = 2
3
.

On the another hand, it is also interesting to compare the collapse time for a dust fluid and
the stiff matter, which are given by [7] [see Eq. (9)]

tc(dust) =
2

3H1(1− β)
, tc(stiff) =

1

3H1(1− β)
. (18)

The difference between the both collapse times, furnish, theoretically, the necessary time for a
dust fluid to reach the stiff matter state. Note that the time for dust cloud to become a ball of
stiff matter is equal to the time needed for the stiff ball collapse.
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