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Abstract. We report on recent progress in understanding pairing phenomena in low-density
nuclear matter at small and moderate isospin asymmetry. A rich phase diagram has been
found comprising various superfluid phases that include a homogeneous and phase-separated
BEC phase of deuterons at low density and a homogeneous BCS phase, an inhomogeneous
LOFF phase, and a phase-separated BCS phase at higher densities. The transition from the
BEC phases to the BCS phases is characterized in terms of the evolution, from strong to weak
coupling, of the condensate wavefunction and the second moment of its density distribution in
r-space. We briefly discuss approaches to higher-order clustering in low-density nuclear matter.

1. Introduction
The two-nucleon interactions in nuclear matter at sub-saturation densities (below about half the
saturation density) are well constrained by the phase-shift data and analysis of elastic nucleon-
nucleon collisions, facilitating a quantitative many-body description of nuclear matter in this
regime. However, a significant theoretical challenge is posed by the complexity of behavior
arising from the dominant attractive part of the nuclear interaction, notably the formation
of nuclear clusters and the emergence of nucleonic pair condensates of the Bardeen-Cooper-
Schrieffer (BCS) type. Such a description is of direct relevance for the matter found in supernovae
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and neutron stars. These two settings differ somewhat in the regions of parameter space (density,
temperature, isospin asymmetry) involved. For example, in supernovae the nuclear matter is at
finite isospin asymmetry which, however, is small compared to that of cold β-catalyzed neutron
star matter. In this contribution we review some recent progress in establishing the nature of
pairing in low-density nuclear matter.

2. Pairing
If we restrict ourselves to only two-body correlations, nuclear matter at extremely low density
is a mixture of quasi-free nucleons and deuterons, the only effect of the interaction being to
renormalize the mass of the constituents. As bosons, the deuterons may also condense and
form a Bose-Einstein condensate (BEC) even without interactions, provided, of course, the
temperature is sufficiently low [1, 2, 3, 4, 5, 6]. Increasing the density of the system while
keeping its temperature constant serves to increase the degeneracy of the system. As the density
ρ approaches the saturation density ρ0 = 2.8 × 1014g cm−3 of symmetrical nuclear matter, the
abundance of deuterons is reduced by Pauli blocking of the phase space available to nucleons (for
a recent discussion see [7]). However, because at high densities the nucleons fill a Fermi sphere
and because the interaction between nucleons is attractive, there emerges a BCS-type coherent
state – a condensate of paired nucleons.

The dominant pairing interaction comes from the 3S1-
3D1 (SD) partial wave, i.e., the same

interaction channel that binds the deuteron. Therefore, we may anticipate that the nuclear
matter undergoes a BEC-BCS phase transition as the density increases. This effect has been
conjectured to occur in the context of intermediate-energy heavy-ion collisions [1, 2] and more
recently in the context of supernovae [8, 9].

The theoretical framework developed by Nozières and Schmitt-Rink [10] for description
of the BCS-BEC transition in the condensed-matter context can be transposed to nuclear
matter. Importantly, however, isoscalar neutron-proton (np) pairing is disrupted by the isospin
asymmetry induced by weak interactions in stellar environments and expected in exotic nuclei,
since the mismatch in the Fermi surfaces of protons and neutrons suppresses the pairing
correlations [11]. The standard Nozières-Schmitt-Rink theory of the BCS-BEC crossover has
been modified to account for this fact [12]. The emergence of two mismatched Fermi surfaces in
isospin-asymmetrical nuclear matter introduces a new scale into the problem, namely the shift
δµ = (µn − µp)/2 in the chemical potentials µn and µp of neutrons and protons (up or down)
from their otherwise common value µ̄ = (µn + µp)/2. If sufficiently large, this shift can destroy
the condensate.

In the isospin symmetrical case (at δµ = 0) the condensate is characterized by a gap ∆0 in the
SD channel of order several MeV. A sequence of unconventional phases has been conjectured to
occur with increasing isospin symmetry, i.e., as δµ increases from zero to values of order ∆0. One
of these is a neutron-proton condensate whose Cooper pairs have non-zero center-of-mass (CM)
momentum [13, 14, 15]. This phase is the analogue of the Larkin-Ovchinnikov-Fulde-Ferrell
(LOFF) phase in electronic superconductors [?, 16]. Another possibility is phase separation into
superconducting and normal components, proposed in the context of cold atomic gases [17]. At
large isospin asymmetry, where SD pairing is strongly suppressed, a BCS-BEC crossover may
also occur in the isotriplet 1S0 pairing channel. Finally, it has been conjectured that spontaneous
deformation of Fermi surfaces is an alternative to the LOFF phase and can in fact dominate the
latter in nuclear systems [14].

Recently, the concepts of unconventional SD pairing and the BCS-BEC crossover were unified
in a model of isospin-asymmetric nuclear matter [9] by including some of the phases mentioned
above. A phase diagram for superfluid nuclear matter was constructed over wide ranges of
density, temperature, and isospin asymmetry. The coupled equations for the gap and the
densities of constituents (neutrons and protons) were solved allowing for the ordinary BCS state,
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Figure 1. Phase diagram of dilute nuclear matter in the temperature-density plane for several
isospin asymmetries α (from [9]). Included are four phases: unpaired phase, BCS (BEC) phase,
LOFF phase, and PS-BCS (PS-BEC) phase. For each asymmetry there are two tri-critical
points, one of which is always a Lifshitz point [?]. For special values of asymmetry these two
points degenerate into single tetra-critical point at log(ρ/ρ0) = −0.22 and T = 2.85 MeV (shown
by a square dot) for α4 = 0.255. The LOFF phase disappears at the point log(ρ/ρ0) = −0.65
and T = 0 (shown by a triangle) for α = 0.62. The boundaries between BCS and BEC phases
are identified by the change of sign of the average chemical potential µ̄.

its low-density asymptotic counterpart BEC state, and two phases that owe their existence to
the isospin asymmetry: the phase with a moving condensate (LOFF phase) and the phase in
which the normal fluid and superfluid occupy separate spatial domains. The latter phase is
referred to as the phase-separated BCS (PS-BCS) phase and, in the strong-coupling regime,
the phase-separated BEC (PS-BEC) phase. In this phase the asymmetry is accumulated in the
normal domains, whereas the superfluid domain is perfectly isospin symmetric.

The gap equation to be solved has the form

∆l(k,Q) =
1

2

∑
l′

∫
d3k′

(2π)3
Vl,l′(k, k

′)
∑
a,r

∆l′(k
′, Q)

2
√
ES(k′)2 + ∆2

l′(k
′, Q)

[1− 2f(Era)], (1)

where the gap ∆(Q) in the quasiparticle spectrum is a function of the modulus Q of the total
momentum of the pair of particles, the l summation is over the coupled partial waves, V (k,k′)
is the neutron-proton interaction potential, f(x) = 1/[exp (x/T )+1], Ear = [E2

S +∆2]1/2 +rδµ+
aEA, and a, r ∈ {+,−}, with ES =

(
Q2/4 + k2

)
/2m∗ − µ̄, EA = k ·Q/2m∗, and ∆2 =

∑
l ∆

2
l .

Note that the gap in the SD state is angle averaged in the denominator of the gap equation;
this approximation can be avoided [15, ?]. Here µ̄ is the average of the chemical potentials µn
and µp of neutrons and protons introduced above, and m∗ is the effective mass of the nucleons.
(Note that we do not distinguish between the effective masses of neutrons and protons.)
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The resulting phase diagram of dilute nuclear matter is shown in Fig 1 for several values
of isospin asymmetry α = (nn − np)/(nn + np), where nn and np are the number densities of
neutrons and protons. Four different phases of matter are present. (a) The unpaired normal
phase is always the ground state at sufficiently high temperatures T > Tc0, where Tc0(ρ) is the
critical temperature of the normal/superfluid phase transition at α = 0. (b) The LOFF phase is
the ground state in a narrow temperature-density strip at low temperatures and high densities.
(c) The domains of phase separation (PS) appear at low temperatures and low densities, while
the isospin-asymmetric BCS phase is the ground state at intermediate temperatures for densities
above the crossover to a BEC phase and below the density where the condensate vanishes in the
isospin symmetrical limit.

In the extreme low-density and strong-coupling regime, the BCS superfluid phases have two
counterparts: the BCS phase evolves into the BEC phase of deuterons, whereas the PS-BCS
phase evolves into the PS-BEC phase, in which the superfluid fraction of matter is a BEC of
deuterons. The superfluid/unpaired phase transitions and the phase transitions between the
superfluid phases are of second order (thin solid lines in Fig. 1), with the exception of the PS-
BCS to LOFF transition, which is of first order (thick solid lines in Fig. 1). The BCS-BEC
transition and the PS-BCS to PS-BEC transition are smooth crossovers. At non-zero isospin
asymmetry the phase diagram features two tri-critical points where the simpler pairwise phase
coexistence terminates and three different phases coexist.

Consistent with the earlier studies of the BCS-BEC crossover, one observes in the phase
diagram of Fig. 1 a smooth crossover to an asymptotic state corresponding to a mixture of a
Bose condensate of deuterons and a gas of excess neutrons. This however occurs at moderate
temperatures, where the unconventional phases do not appear. The new ingredient of the nuclear
phase diagram is the crossover seen at very low temperatures, where the heterogeneous superfluid
phase is replaced by a heterogeneous mixture of a phase containing a deuteron condensate and
a phase containing neutron-rich unpaired nuclear matter.

The transition to the BEC regime of strongly-coupled neutron-proton pairs, which are
asymptotically identical with deuterons, occurs at low densities. The criterion for the transition
from BCS to BEC is that either the average chemical potential µ̄ changes its sign from positive
to negative values, or the coherence length ξ of a Cooper pair becomes comparable to the
interparticle distance, i.e., ξ becomes of order d ∼ ρ−1/3 as it ranges from ξ � d to ξ � d. The
coherence length is related to the wave function of the condensate Ψ(r) by

ξ =
√
〈r2〉, 〈r2〉 =

∫
d3r r2|Ψ(r)|2, (2)

where the wave-function is defined in terms of the kernel of the gap equation according to

Ψ(r) =
√
N

∫
d3p

(2π)3
[K(p,∆)−K(p, 0)]eip·r,

∫
d3r|Ψ(r)|2 = N−1. (3)

Thus the change in the coherence length is related to the change of the condensate wave-function
across the BCS-BEC crossover. In the case of neutron-proton pairing, the criteria for the BCS-
BEC transition are fulfilled, i.e., µ̄ changes sign and the mean distance between the pairs becomes
larger than the coherence length of the superfluid.

In Fig. 2 we display the integrand r2|Ψ(r)|2 of Eq. (2) as a function of radial distance
for BCS and PS states at various densities. In its construction, the PS state corresponds to
the symmetrical BCS state insofar as we are concerned with the nature of the Cooper pairs;
hence there are no effects from the asymmetry in this case; the asymmetry affects the PS
condensate indirectly via the number of particles available for pairing. In the weak-coupling
(high-density-limit) case, the integrand function has an oscillatory form which extends over
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Figure 2. The quantity r2|Ψ(r)|2 as a function of radial coordinate r for T = 0.5 MeV and
densities (from left to right) log10 ρ/ρ0 = −0.5,−1.,−1.5,−2.5 plotted for the asymmetrical
BCS state (upper panel) and the PS phase (lower panel). The values of asymmetry are α = 0.0
(solid lines), 0.1 (dashed lines), 0.2 (dash-dotted lines), and 0.3 (dash-double-dotted lines).

0 0.5 1 1.5 2

k/k
f

0

0.05

0.1

0.15

0.2

0.25

K
(k

)

ρ=0.005 fm
-3

ρ=0.01 fm
-3

ρ=0.02 fm
-3

ρ=0.04 fm
-3

ρ=0.08 fm
-3

T=0.2 MeV. α=0.3

Figure 3. Kernel K(k) of the gap equation (1) as a function of momentum, in units of the
relevant Fermi momentum kF for fixed α = 0.3 and T = 0.2 MeV at various densities.

2nd International Symposium on the Modern Physics of Compact Stars and Relativistic Gravity IOP Publishing
Journal of Physics: Conference Series 496 (2014) 012008 doi:10.1088/1742-6596/496/1/012008

5



many periods of the interparticle distance. This behavior reflects the coherence associated
with the condensate, in which the spatial correlations are characterized by scales much larger
than the interparticle distance. For smaller densities (larger couplings) the integrand of 〈r2〉 is
increasingly concentrated at the origin, with at most a few periods of oscillation. At low density
(strong coupling) the pairs are well localized in space within a radius which is small compared
to the interparticle distance; there is only one spike in the integrand function. This regime
has BEC character, in that the pair correlations just extend over distances comparable to the
interparticle distance. In the case of the BCS superfluid it is seen that isospin asymmetry affects
only the amplitude of the oscillations, the period being unaffected in the weak-coupling limit
and defined by the magnitude of the inverse Fermi momentum.

Further insight into the BCS-BEC crossover can be gained from examining the kernel K(p) of
the gap equation (1), which is defined by the sum appearing to the right of the interaction V in
this equation. Physically, K(p) can be interpreted as the wave function of the Cooper pairs, since
it obeys a Schrödinger-type eigenvalue equation in the limit of extremely strong coupling. The
prefactor of the Pauli operator 1−2f is a smooth function of momentum with a maximum at the
Fermi surface, where ES vanishes. The momentum ranges whose contributions are important
in the gap equation in different regimes of the phase diagram can be identified from Fig. 3. In
the BCS regime, K(p) has two sharp maxima which are separated by a depression (of width
∼ δµ) around the Fermi momentum. Because of strong localization in momentum space, the
Cooper pairs have an intrinsic structure which is broad in real space, implying a large coherence
length. This is characteristic of the BCS regime. The picture is reversed in the strong-coupling
(low-density) limit, where K(p) is a broad function of momentum, corresponding to bound
states (deuterons) well-localized in the real space. This is characteristic of the BEC regime. In
addition, as the density decreases, the lower peak moves toward k = 0, due to the fact that µ̄
changes its sign from positive to negative at the transition from the BCS to the BEC regime.
As a consequence, the prefactor of the Pauli operator 1− 2f peaks at k = 0 in the BEC regime,
rather at the Fermi surface as in the BCS regime.

3. Higher-order clustering
In supernovae the matter is at finite isospin asymmetry (but with small values compared to
those of cold neutron stars) and at relatively high temperatures. These conditions could allow
for a substantial presence of light clusters, notably deuterons, tritons, 3He nuclei, and alpha
particles [8, 18, 19, 20, 21, 22, 23]. The composition of nuclear matter in thermodynamic
equilibrium at low density is given by the mass action law, the so-called nuclear statistical
equilibrium (NSE). At given temperature T and total baryonic density ρ, the partial densities of
the components c (whether nucleons or nuclei) are determined by a phase-space sum (integral)
over their Fermi or Bose distribution functions as

nc = gc
∑
P

{
exp

[(
P 2

2Acm
+ Ec − Zcµp −Ncµn

)/
T

]
± 1

}−1
, (4)

where P is the center-of-mass momentum, Zc and Nc are the proton and neutron numbers of
component c, Ac = Nc + Zc is its mass number, and gc is its degeneracy factor (accounting
for spin and excitations). A number of studies [8, 18, 19, 20, 21, 22, 23] clearly demonstrate
the importance of two- and four-body correlations. The NSE approach is valid at low-densities,
where the free-space binding energies of bound states are not affected by the nuclear environment.
As the baryon density increases, the energies of bound states are modified due to the strong and
electromagnetic interactions. These modifications can be incorporated by solving an “effective”
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Schrödinger equations for an A-particle cluster (see [24] and references therein)[
A∑
i=1

Emf
i − E

]
ψ(1 . . . A) +

A∑
i<j

[1− f(i)− f(j)]
∑
1′...A′

Vij(1 . . . A, 1
′ . . . A′)ψ(1′ . . . A′) = 0 , (5)

where the indices i, j label nucleons, ψ(1 . . . A) is a bound-state wave function, E is its
corresponding energy eigenvalue, Vij is the pairwise interaction potential, and f(i) is the
distribution function of nucleon i. The mean-field corrections to the quasiparticle energies
are included in Emf

1 and can be evaluated from the Skyrme or the relativistic mean-field
functionals. The modifications of energies of higher-order bound states depend on the center-
of-mass momentum P as well as the thermodynamic parameters of the medium. These have
been computed in detail recently in Ref. [24], where fitting formulas are also given. The main
physical effect of these modifications is to suppress the abundances of clusters upon asymptotic
approach to the nuclear saturation density.

To demonstrate the utility of the “effective” Schrödinger equation (5), we consider the
example of a four-nucleon (α-like) cluster and assume for simplicity that both T and α are
zero. Bound states can appear below the continuum of scattering states, whose edge is given
simply by the sum of the energies EF of two neutrons and two protons at the tops of their
respective Fermi seas. In the zero-density limit, α particles are formed with bound-state energy
E0
α = −28.3 MeV. The energy of the center-of-mass motion vanishes at P = 0. At finite density

of the surrounding nuclear matter, the energy of the four-nucleon bound state is shifted due to
Pauli blocking, so that E4[T, ρ] = E0

α + ∆EPauli
4 (T, ρ) . The shift EPauli

4 has been found from
Eq. (5) within a variational approach using a Gaussian form for the wave function and a Gaussian
separable interaction, adjusted to reproduce the binding energy and the r.m.s. radius of the α
particle [25]. The density dependence of the shift (at vanishing T and α) is well approximated
by ∆EPauli

4 (ρ) = 4515.9 ρ − 100935 ρ2 + 1202538 ρ3, where the energy is given in units of MeV
and the density in units of fm−3. Using this formula, it is easy to deduce that the binding
energy of an α particle crosses the continuum 4EF at a density ρ ∼ 0.03 fm−3, above which no α
particle bound state can be formed. Analogous fits to in-medium binding energies for other light
clusters can be found in [19]. These compare well with exact solutions of the three- and four-
body quantum mechanical problems in the medium (see, for example, [3, ?, 26] and references
therein). A useful feature of Eq. (4) is that it has the character of a Bose distribution function
of a cluster for even A which implies that the physics of BEC of clusters (notably the critical
temperature) can be deduced starting from NSE or its modifications that include density- and
temperature-dependent binding energies.

4. Outlook
It is apparent from the discussion above that low-density and moderately warm nuclear matter
can have a rather complicated phase diagram at finite, but small, isospin asymmetries. It is
also apparent that higher-order clusters need to be included in the phase diagram to make
the discussion complete. Furthermore, the α particles will form a Bose-Einstein condensate
at sufficiently low temperatures (see [27, 28, 29] and references therein). The extent to which
these clusters modify the structure of the phase diagram developed here remains to be studied.
The diverse microscopic aspects of superfluid, asymmetrical nuclear matter portend diverse
ramifications for the astrophysics of supernovae and hot compact stars.
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