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Abstract. We study the abrupt changes in the characteristics of compact stars due to the
quark deconfinement phase transition. The hadronic phase is described within the relativistic
mean-field theory, including a scalar-isovector δ-meson effective field. To describe the quark
phase, we use the MIT bag model, in which the interactions between u, d and s quarks inside the
bag are taken into account in the one-gluon exchange approximation. We analyze catastrophic
changes of the parameters of the near-critical configuration of compact star and compute the
amount of the energy released by a corequake for the two extreme cases of the deconfinement
phase transition scenarios. The first one corresponds to the ordinary first-order phase transition
(Maxwell scenario) and the second one corresponds to the phase transition calculated using the
bulk Gibbs equilibrium conditions and global charge neutrality (Glendenning scenario).

1. Introduction

Clarification of the structure and internal composition of compact stars is one of the main
problems in modern physics. The circumstance that the central density of neutron stars is
several times larger than the saturation density of nuclear matter makes neutron stars a specific
natural laboratory for studying the characteristics of exotic states of matter at extremely high
densities. Because of the very large densities achieved in the centers of compact stars various
exotic particle species and phases of matter such as, for example, hyperons, deconfined quark
plasma of u, d, s quarks, π and K meson condensates can arise. Over the past few decades many
researchers have intensively studied various aspects related to the formation of exotic degrees
of freedom in neutron stars and proposed observational tests that can confirm the existence in
the interiors of compact stars such constituents (for review see, e.g., Refs. [1, 2] and references
therein). The authors of several papers attempted to draw a conclusion about the existence
of quark matter in compact stars through investigations of the mass-radius relation for such
stars relying on the fact that compact stars made of quark matter have smaller radii than their
hadronic counterparts of the same mass [3]. The studies of the thermal evolution the quark
stars can also provide information about the existence of a quark component in the star [4].
Furthermore, the studies of gravitational radiation from compact stars can provide additional
channel of information on existence of the quark matter inside compact stars [5].

Phase transitions accompanied by discontinuities of the thermodynamic potentials are of
special interest, because they lead to a dynamical rearrangement of neutron stars. Depending
on the value of surface tension σs, the phase transition from nuclear matter to quark matter can
occur within two scenarios [6, 7]: one corresponds to the ordinary first order phase transition
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at constant pressure with a density jump (Maxwell construction), the other to formation of
mixed hadron-quark matter with a continuous variation of pressure and density. The problem
of the formation of a mixed phase taking into account the finite dimensions of the quark
structures inside nuclear matter, the Coulomb interaction, as well as the surface energy, has
been examined in Refs. [7, 8, 9]. It was shown that the mixed phase is energetically favorable
for small values of the surface tension between the quark matter and the nuclear matter. The
uncertainty in the value of the surface tension makes it impossible to determine the actual phase
transition scenario that will take place. The quark-hadron phase transition can be triggered,
for example, by the dynamical process of accretion of matter onto the surface of a hadronic
neutron stars. Such accretion can lead to an increase of the central density of the stars and to
formation of a new phase containing deconfined quarks in the center of the star. The process of
catastrophic rearrangement with the formation of a quark core of finite radius at the star’s center
will be accompanied by a release of a colossal amount of energy, which is comparable to the
energy release during a supernova explosion. Note that a similar process of both restructuring
and energy release takes place also in the case of pion condensation in the cores of neutron
stars [10, 11, 12, 13, 14].

The recent series of our articles [15, 16, 17] were devoted to a detailed investigation of
quark deconfinement phase transition in neutron star matter. The nuclear matter was described
within the relativistic mean-field (RMF) theory with the scalar-isovector δ-meson effective field.
The bulk calculation results of the mixed phase structure (Glendenning construction) [18] were
compared with the results of a usual first-order phase transition (Maxwell construction). Here
we investigate the energy release and the change in the integral parameters of compact stars due
to a phase transition from hadronic to quark matter in these two extreme scenarios and identify
how these depend on the chosen scenario of the phase transition.

2. Equation of state of neutron star matter

2.1. Equation of state of hadronic phase

We use the equation of state (EoS) of Baym, Bethe, and Pethick (BBP) [19] for the description
of hadronic phase in the lower density region corresponding to the outer and inner crust of
the star. In nuclear and supranuclear density region (n ≥ 0.1 fm−3) we use the relativistic
Lagrangian density of many-particle system consisting of nucleons, p, n, electrons and isoscalar-
scalar (σ), isoscalar-vector (ω), isovector-scalar (δ), and isovector-vector (ρ) - exchanged mesons.
The Lagrangian of the theory is given by
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where σ, ωµ,
−→
δ , and −→ρ µ are the fields of the σ, ω, δ, and ρ exchange mesons, respectively, mN ,

me, mσ, mω, mδ, mρ are the masses of the free particles, ψN =

(

ψp

ψn

)

is the isospin doublet

for nucleonic bispinors, and −→τ are the isospin 2 × 2 Pauli matrices. Antisymmetric tensors of
the vector fields ωµ and −→ρ µ are given by

Ωµν = ∂µων − ∂νωµ, ℜµν = ∂µ−→ρ ν − ∂ν−→ρ µ. (2)
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In our calculations we take aδ = (gδ/mδ)
2 = 2.5 fm2 for the δ coupling constant, as in

Ref. [20]. Also we use mN = 938.93 MeV for the bare nucleon mass, m∗
N = 0.78 mN for

the nucleon effective mass, n0 = 0.153 fm−3 for the baryon number density at saturation,
f0 = −16.3 MeV for the binding energy per baryon, K = 300 MeV for the incompressibility

modulus, and E
(0)
sym = 32.5 MeV for the asymmetry energy. Then the five other constants,

ai = (gi/mi)
2 (i = σ, ω, ρ), b and c, can be determined numerically: aσ = (gσ/mσ)

2 = 9.154
fm2, aω = (gω/mω)

2 = 4.828 fm2, aρ = (gρ/mρ)
2 = 13.621 fm2, b = 1.654 · 10−2 fm−1,

c = 1.319 · 10−2. The knowledge of the model parameters allows us to solve the set of four
equations in a self-consistent way and to determine the (renamed) mean-fields, σ ≡ gσσ̄,
ω ≡ gωω̄0, δ ≡ gδ δ̄

(3), and ρ ≡ gρρ̄0
(3), which depend on baryon number density n and asymmetry

parameter α = (nn − np)/n. The standard quantum-hadro-dynamics (QHD) procedure allows
us to obtain the expressions for energy density ε(n, α) and pressure P (n, α) (for details see
Ref. [15]).

2.2. Equation of state of strange quark phase

To describe the quark phase an improved version of the MIT bag model was used, in which
the interactions between u, d, s quarks inside the bag are taken in a one-gluon exchange
approximation [21]. We choose mu = 5 MeV, md = 7 MeV and ms = 150 MeV for quark
masses, B = 60 MeV/fm3 for bag parameter and αs = 0.5 for the strong interaction constant.

2.3. Maxwell and Glendenning constructions

Using these EoS for the nucleonic and the quark phases we first calculate the physical parameters
of the phase transition in the case of the Glendenning construction (where these phases satisfy
the Gibbs condition and are separately electrically charged, but the global electrical neutrality of
the system is maintained). We then examine the second case where both phases are separately
neutral and the transition is the usual first-order phase transition corresponding to the well-
known Maxwell construction. Model EoSs of neutron star matter for Glendenning and Maxwell
construction cases are presented in Fig. 1. In case of the Maxwell construction the phase
transition occurs at constant pressure P0 = 2.11 MeV/fm3 and nucleonic matter with the
energy density εN = 114.5 MeV/fm3 coexists with the quark matter whose energy density
is εQ = 271.4 MeV/fm3. In the case of Glendenning construction the deconfinement phase
transition proceed through formation of a mixed hadron-quark phase. The boundaries of the
mixed phase are εN = 72.79 MeV/fm3, PN = 0.43 MeV/fm3 and εQ = 1280.88 MeV/fm3,
PQ = 327.75 MeV/fm3.

It was shown in Ref. [22] that for an ordinary first order phase transition, the density
discontinuity parameter λ = εS/(εN + P0) plays a decisive role in the stability of neutron
stars with arbitrarily small cores made of the denser phase of matter. Here P0 is coexistence
pressure of the two phases, and εN , εS are the energy densities of the normal and superdense
phases, respectively. Paraphrasing the conclusions of Ref. [22], we can state that the stability
criterions for the first-order hadron-quark phase transition: if λ < 3/2, then a neutron star with
an arbitrarily small core of strange quark matter is stable, whereas if λ > 3/2, neutron stars with
small quark cores are unstable. In the latter case, for a stable star there is a nonzero minimum
value for the radius of the quark core. In case of the Maxwell construction of deconfinement
phase transition discussed in this article, the value of jump parameter is λ = 2.327.

3. Changes in the Stellar Parameters triggered by the formation of quark phase

Using the neutron star matter EoSs obtained in previous section, we have integrated the Tolman-
Oppenheimer-Volkoff (TOV) equations [24, 25] and obtained the gravitational mass M , radius
R, baryonic mass M0 = mNNB (mN is the nucleon mass and NB the total number of baryons)
and moment of inertia I of compact stars for the different values of central pressure Pc.
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Figure 1. EoS of neutron star mat-
ter for the two different hadron-quark
phase transition constructions. Solid and
dashed lines correspond to the Glenden-
ning and Maxwell constructions, respec-
tively, whereas the dotted line to the pure
npe matter. Open circles represent the
mixed phase boundaries.
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Figure 2. Mass-radius relations for model
EoSs presented in Fig. 1. The labeling of the
curves is the same as in Fig. 1. Open circles
mark the critical configurations, solid circles
mark the stable hybrid stars with minimal
mass. The dash-dotted line between circles
corresponds to the branch of unstable stars.

In Fig. 2 we show the M(R) dependence of compact stars for different quark deconfinement
phase transition scenarios. Open circles denote the critical configurations while solid circles
denote the stable stars with minimal mass in the center of which there are deconfined quarks.
Moreover, in the case of Maxwell construction, this core is composed of a quark-electron plasma,
while in the Glendenning construction case it is composed of a mixed quark-hadron matter.
We can see that for both phase transition scenarios considered here there are unstable star
branches between critical and minimum-mass configurations (dot-dashed line segments). The
fact that in the case of Maxwell construction, the M − R relation exhibits such a behavior, is
not surprising, since according to the Seidov criterium [22, 23], the infinitesimal core of denser
matter in ordinary first order phase transition is unstable when λ > 3/2. The corresponding EoS
of neutron star matter considered here satisfies this condition. The appearance of the unstable
branch of compact stars with infinitesimal core consisting of a mixed hadron-quark matter in the
case of Glendenning construction is not standard. In fact, in this scenario the energy density is
a continuous function of pressure and in most cases leads to a monotonic increase of stars’ mass
in the domain which corresponds to the lower boundary of the mixed phase. This implies that
the configurations with an infinitesimally small core containing the mixed phase are in many
cases stable. In the case of Glendenning construction considered here, the branch of unstable
compact stars appears near the lower threshold of the mixed phase. Consider the situation
where matter is accreted onto the surface of an ordinary neutron star located below the critical
configuration. The baryonic mass of the star will increase, the star will reached the mass of the
critical configuration at which instance a transition to the configuration with deconfined quark
phase will take place.

It is worthwhile to note that the maximum masses of the stars containing deconfined quarks
areMmax = 1.853M⊙ andMmax = 1.828M⊙ for the Glendenning and the Maxwell constructions,
respectively. Since the transition of ordinary neutron star to a star containing quark matter
occurs at a constant baryon number, it is convenient to consider the star characteristics as
functions of baryonic mass M0. The binding energies Ebind = (M −M0)c

2 of compact stars
as a function of baryonic mass M0 for the Maxwell and the Glendenning hadron-quark phase
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Figure 3. Binding energy of compact stars as
a function of baryonic mass M0 for Maxwell
(left panel) and Glendenning (right panel)
constructions. Dotted line corresponds to the
pure nuclear matter. CN marks the critical
configuration of hadronic star, and CQ marks
the neutron star with same baryonic mass
containing quark phase.
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Figure 4. The total energy release due
to the hadron-quark phase transition as a
function of baryonic mass of neutron star
M0 for the Maxwell and the Glendenning
constructions. Circles correspond to the
CN → CQ transition shown in Fig. 3.

transition scenarios are shown in Fig. 3. Accretion of matter onto the surface of the critical
configuration CN will lead to a jump-like transition to the configuration CQ, which will have
a finite-size core containing deconfined quark matter. This transition will be accompanied
by an enormous release of energy determined by the difference in binding energies of these
configurations:

Erelease = Ebind(CQ)− Ebind(CN ) = (M(CN )−M(CQ))c
2. (3)

In Fig. 4 we plot the total energy release as a function of baryonic mass of star. One can see that
in both scenarios of the phase transition he released energy increases with increasing baryonic
mass M0. For fixed values of M0 the energy that is converted in the phase transition is larger
in the case of Glendenning construction than in the case of Maxwell construction. In addition,
the minimum required baryonic mass for the catastrophic rearrangement of the neutron star,
accompanied by the formation of a quark core in the center of the star, is greater in the Maxwell
scenario. In the case considered here, the quark deconfinement phase transition in the neutron
star interior leads to the energy release of order 1050 ÷ 1052 erg. Fig. 5 shows the changes in
stellar radius ∆R = RQ −RN due to the quark deconfinement phase transition as a function of
the baryonic mass M0 in both the Glendenning and the Maxwell scenarios. It is seen that in
both cases the compact stars radii decrease. Fig. 6 shows the fractional changes in the moment
of inertia of compact stars, (IQ − IN )/IN , for the two types of phase transition. It is seen that
the dependence of the quantities ∆R and ∆I/IN on the baryonic mass of the stars are clearly
distinct in the two alternative scenarios of phase-transition.

4. Conclusion

Starting from relativistic mean-field description of hadronic phase and improved MIT model
description of the quark phase we obtained the EoS of compact stars with a quark-deconfinement
phase transitions, which was treated using either the Maxwell or the Glendenning construction.
We found the dependence of conversion energy on the baryonic mass of neutron stars and
analyzed the changes in stellar radii and moments of inertia due to the deconfinement phase

2nd International Symposium on the Modern Physics of Compact Stars and Relativistic Gravity IOP Publishing
Journal of Physics: Conference Series 496 (2014) 012001 doi:10.1088/1742-6596/496/1/012001

5



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-10

-8

-6

-4

-2

0

 Maxwell Constr.

 Glendenning Constr. 

R
, 

k
m

M
0
,  M

Figure 5. Changes in the stellar radius due
to the hadron-quark phase transition as a
function of baryonic mass M0 of a neutron
star for both Maxwell and Glendenning
scenarios.

Figure 6. Fractional changes in the stellar
moment of inertia ∆I/IN as a function of
baryonic massM0 of a neutron star for both
Maxwell and Glendenning scenarios.

transitions. We demonstrated that for a fixed value of the baryonic mass of the star, the energy
conversion in the case of the Glendenning construction is greater than in the case of the Maxwell
construction. The minimum required baryonic mass for the catastrophic rearrangement of the
neutron star and the formation of a quark core in the center of the star is greater in the case of
the Maxwell construction as compared to the Glendenning construction. In the cases considered
here, the quark deconfinement phase transition in the neutron star interior leads to the energy
release of order 1050 ÷ 1052 erg.
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