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Abstract. We employed the Hierarchical Bayesian spatio temporal (HBST) Gaussian Process 
(GP) model for forecasting the distribution of the Earth’s trapped particle. The model was 
applied in the South Atlantic Anomaly (SAA) region. Data from 1-30 January 2000 of  >30 
keV electron flux acquired by National Oceanic and Atmospheric (NOAA) 15 satellite was 
carried to model. The purpose was to forecast the flux value on 31 January 2000. Gridding 
process of 10x10 lot-lan was performed after cleaning and log transforming data. The HBST 
GP model was undertaken by implementing the Monte Carlo Markov Chain (MCMC) method. 
The forecasting result was interpolated by using Kriging technique to draw the distribution 
map of particle flux. Statistical validation  represented by mean square error, root mean square 
error, mean absolute error, mean absolute percentage error, bias, relative bias, and mean 
relative separation shows good indicators. The visual validation also figured a quite similarity 
with NOAA’s map that the model capable to forecast the particle flux. 

1.  Introduction 
Trapped particle is one of major radiation in the space environment. It is produced by solar flares and 
CMEs and flows out to the Earth’s atmosphere by the solar wind [1]. Due to geomagnetic field line the 
charged particle is trapped into two areas of Van Allen radiation belt: the inner radiation belt and the 
outer radiation belt. Trapped particle could cause harmful effects to the spacecraft that pass through 
their region especially for low earth orbit (LEO) satellite [2]. Therefore, it is important to model the 
distribution of Earth’s trapped particle. There are several trapped particle models that have been 
developed, mostly are based on physics - magneto hydro dynamics (MHD) frame, such as 
SWMF/BATS-R-US with RCM [3], Fok Ring Current [4], Plasma sphere [5], CIMI [6]. The most 
used and the stable one, the AE-9/AP-9 [7] is run in a statistical modeling framework. 

In this work, we choose to employ a statistical model, named hierarchical Bayesian spatio temporal 
model (HBST). The unique of this model because it works on a geographical coordinate rather than 
the (L, B) coordinate like the others. Although the approach of representing the trapped particle in 
magnetic coordinate is preferred in scientific application, the necessity of simple displayed model for 
the end user like satellite operator and designer is taking into account [8]. In addition, the model can 
be employed for both proton and electron in every condition of solar activity. The model can also 
perform a long time forecast like daily or weekly of solar trapped particle flux value. Our objective of 
this work is attempted to build the trapped particle distribution forecasting system for satellite operator 
and designer. 
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In this paper, the model developed is applying for the South Atlantic Anomaly (SAA) region, 
before applied in the whole area of Earth atmosphere. SAA is an atmosphere region centered over 
Brazil sky which lies from -90° to 40° of longitude and from 0° to -50° of latitude, at the altitude of 
~500 km. The SAA is a main source of trapped particle in the inner radiation belt. We use the data 
acquired by National Oceanic and Atmospheric Administration (NOAA) 15 satellite, a polar orbit 
satellite with inclination 98.5° and altitude ~807 km. Based on this condition, our distribution 
forecasted is valid in the altitude of 300-800 km and in the shell of L ≤ 1. We also perform the forecast 
on a daily basis. 

2.  Methodology 

2.1.  NOAA Data  
The NOOA 15 data (http://satdat.ngdc.noaa.gov/sem/poes/data/avg/txt/) consists of 41 columns that 
contain time, locations, and flux values of observed particles, with the energy range from 30 keV to 
200 MeV. For simplicity purpose, we chose the lowest energy level, >30 keV electron flux. The 
details explanation for the data can be access through NASA - National Geophysical Data Center 
(NGDC) (http://satdat.ngdc.noaa.gov/sem poes/docs/readme_16s_ascii.txt). In this work, we use of 
electron data, based on the location of the SAA. Once data sorted, then the next phase are data 
cleaning, performing logarithmic transformation to stabilize the data distribution, and finally gridding 
them. 

The important step in the data process is gridding the data. NOAA 15 completes its orbit in about 1 
hour and 40 minutes. Due to that fact, a point of observation could not be observed in a long period of 
time. We have calculated that a point in a grid of 1x1 longitude and latitude will be observed again in 
about two months, and this make impossible to do a forecast due to the lack of data. Therefore, 
gridding data is proposed to solve this problem. We use the 10x10 gridding system (see Figure 1). 

Each data in a grid was averaged with its counterparts and put the average value in the center of the 
grid. The new value and the new location then become a representative of a grid. We employed this 
procedure to 65 grids of 10x10 sizes. For validation purpose, we chose 15 points randomly as the 
validation points, and the rest as the model input as shown in Figure 1. 

 

 
Figure 1. The validation and fit points in SAA with 10x10 grids 

 
The validation process was conducted by comparing the values in validation points obtained by the 

forecasting process with the original values obtained by observation. Data from 1-30 January 2000 has 
chosen as the mode fitting. Our target is to forecast the flux value on 31 January 2000 with the model 
obtained. 

2.2.  Hierarchical Bayesian Spatio Temporal Model  
HBST model is a statistical modeling technique that deals with space time modeling in Bayesian 
approach. Considering Gelfand [9], the HBST has a structure: 
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   First stage : Data model [Z|E, θ] 

   Second stage : Process model [E|θ] 

  Third stage : Parameter model [θ] 
 
where the data defined by Z, the (hidden) process is defined by E , and the unknown 
parameters are specified by θ.  

First of all, we define the generic notations used throughout this paper, and the formula related to 
them [10]. Let Z (si, t) is denoted the logarithmic value of SAA’s  > 30 keV electron flux at site si and 
time t, i = 1,…, n and t=1,…, T. E(si, t) is as a true value corresponding to Z(si, t). We put T = 30 at 
this work to accommodate selected data from 1-30 January 2000 as the model input. We put 31 
January 2000 as our forecasting target, notified as T+1. We choose to define both Z and E in vector 
notation as Zt = (Z (si, t),…, Z (sn, t))' and Et = (E (si, t),…, E (si, t))'. Therefore the HBST GP model 
[11] is expressed by: 

ܼ௧ ൌ ௧ܧ ൅ ߳௧  (1) 

௧ܧ ൌ ܺ௧ߚ ൅  ௧  (2)ߟ

with ߳௧ ൌ ቀ߳൫ݏଵ,ݐ൯, … , ߳൫ݏ௡,ݐ൯ቁ
′
~	ܰሺ0,  ௡ሻ is an error process. Included in this term, theܫఢଶߪ

 ௡ is the n x nܫ ఢଶ is a nugget effect, and is homogeneous in space and time, whereas theߪ
identity matrix. The covariates influencing the Z value is denoted by Xt with n x p matrix 
size, and β = ( β1,…, βp)' is the p x 1 vector of Xt, respectively. NOAA 15 data does not 
provide any covariate data for the trapped flux, so the intercept value is employed in Equation 

2. Furthermore, the	ߟ௧ ൌ ൫݊ሺݏଵ, ,ሻݐ … , ݊ሺݏ௡, ሻ൯ݐ
′
~	ܰሺ0,Σ௡ሻ, is a spatially correlated error. 

Included in, the Σ௡ ൌ ఎଶܵ௡ߪ ൌ ,௜ݏ൫ߢఎଶߪ ;௝ݏ ߶, ߭൯ is a variance-covariance matrix, and have 
dimension n x n, i, j = 1,…, n. Afterward, the ߪఎଶ is the site invariant common variance. The 
.ሺߢ ; ߶, ߭ሻ expresses the spatial correlation matrix with spatial decay ߶, and smoothness 
parameter	߭. The error parameters߳௧, and ߟ௧, are independent each other. For future reference, 
z is denoted all observed data, x is denoted all covariates data, and E represent all augmented 
values. Lastly, we use θ symbol to assert all parameters used (ࣂ ൌ ൫ܧ, ,ߚ ,ఢଶߪ ,ఎଶߪ ∅൯). 

For forecasting purpose, the HBST GP model at any observed point si on T+1 day is expressed in 
terms below: 

Zሺs୧, T ൅ 1	ሻ ൌ Eሺs୧, T ൅ 1	ሻ ൅ ϵሺs୧, T ൅ 1	ሻ   (3) 

Eሺs୧, T ൅ 1	ሻ ൌ x′ሺs୧, T ൅ 1	ሻߚ ൅ ηሺs୧, T ൅ 1	ሻ  (4) 

with posterior predictive distribution of Zሺs୧, T ൅ 1	ሻ given z is denoted by:  

πሺZሺs୧, T ൅ 1	ሻ|ܢሻ ൌ නπሺZሺs୧, T ൅ 1	ሻ|ી, ۳, Eሺs୧, T ൅ 1	ሻ, ሻܢ πሺEሺs୧, T ൅ 1	ሻ|ી,  ሻܢ

πሺી, ,ሻ݀Eሺs୧ܢ|۳ T ൅ 1	ሻ݀۳݀ࣂ		(5)   

Finally, to summarize this method, we perform the following algorithm to predict the Zሺs୧, T ൅ 1	ሻ, 
by using Monte Carlo Markov Chain (MCMC)-Gibbs sampling method with j iterations: 

1. Draw a sample θ(j), and E(j), j ≥ 1 from Equation 5. 

2. Draw Eሺ୨ሻሺs୧, T ൅ 1	ሻ from	N ቀx୘ାଵ
′ βሺ୨ሻ, ση

ଶሺ୨ሻቁ. 

3. Finally draw Zሺ୨ሻሺs୧, T ൅ 1	ሻ from	N ቀEሺ୨ሻሺs୧, T ൅ 1ሻ, σ∈
ଶሺ୨ሻቁ. 
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Once the value of Z at T+1 day obtained, then the result is displaying in a geographic map by using 
Kriging interpolation technique. Detail of the Kriging interpolation technique applied on the 
distribution of trapped particle over SAA region can be found at Suparta et al. [12]. Figure 2 is the 
flow chart of this work methodology. 

 

Figure 2. The flow chart of trapped particle flux distribution forecasting 

3.  Result and discussion 

3.1.  Statistical Validation 
Statistical analysis was performed through seven validation parameters: mean squared error (MSE), 
root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error 
(MAPE), bias (BIAS), relative bias (rBIAS) and the mean relative separation (rMSEP). Details 
formulas of the validation parameters can be found at Bakar and Sahu [13]. Table 1 shows the results 
of validation process. 

 
Table 1. Validation result of GP model 

MSE RMSE MAE MAPE BIAS rBIAS rMSEP 

0.5577 0.7468 0.6691 19.3589 0.1796 0.0457 0.4969 
 

From Table 1, we can conclude that the forecast values and the observed data have a high degree of 
similarity since the validation parameters produced the small numbers. This allows us to draw the 
conclusion that the HBST GP model can work well and give an accurate result in the term of 
forecasting. 

3.2.  Visual Analysis 
The visual analysis was performed by comparing the Kriging results, both estimates and variance with 
several patterns of map distribution, i.e. daily data plot, NOAA’s distribution map, Kriging 
interpolation on the raw data and Kriging interpolation on the grid data. Figures 3a and 3b present the 
electron >30 keV daily plot on 31 January 2000 and its distribution map drawn by NOAA, 
respectively. Figures 4, 5, and 6 present the distribution maps of electron estimation and variance 
obtained by ordinary Kriging method on STHB-GP model forecast result, empirical, and grid data, 
respectively. We could understand from Figure 3a that the data collected is so lack, and is a 
challenging work to deal with it.  As for Figure 3b, nine days data are collected by NOAA to get the 
distribution map. On the other hand, we could produce a 1-day forecast value of SAA electron flux 
and display in a distribution map as in Figure 4a, while Figure 4b refers to the variance of Kriging 
interpolation on the forecasting result. When we compare the estimation of Kriging from Figures 4a, 
5a, and 6a, we could see that the pattern of forecasting estimate (Figure 4a) is slightly different from 
the others and the pattern is more widened rather than concentrated. It is also reflected a decreasing 
value of flux maximum log in a significant rate, that is, from > 6 in the observed data to <5 in the 

Sort, clean, 
transform and grid 

data from NOAA 15

Do STHB 
forecast 

Do Kriging 
Interpolation
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forecast estimate. This visual analysis showed an opposite result with the statistical validation which 
showed very good results. Gridding process is probably as major factor to this problem as a 
consequence of averaging and centering. 

 
Figure 3.  Mep0e1 data on 31 January 2000 for (a) raw data and (b) NOAA’s SAA on 23-31 

January 2000 

 

Figure 4. Flux Distribution map of >30 keV electron over SAA region on 31 January 2000, for (a) 
forecast estimation and (b) forecast variance 

 

Figure 5. Flux Distribution map of >30 keV electron over SAA region on 31 January 2000, for (a) 
raw data estimation and (b) raw data variance 

 
Figure 6.  Flux Distribution map of >30 keV electron over SAA region on 31 January 2000 for (a) 

grid data estimation and (b) grid data variance 
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4.  Summary and Future Works 
HBST-GP model was successful to perform the forecasting of Earth trapped particle over the SAA 
region. We also achieved to deliver the convenient way to figure the >30 keV electron flux 
distribution map by implementing the Kriging interpolation method on a geographical map. Statistical 
analysis showed good results whereas the visual gave a slightly different pattern. It was also seen a 
significant decreasing of the flux maximum log value. To accomplish these problems, two ways are 
suggested to apply at the future work, i.e. shrinking the grid size and using more data from NOAA 
satellite series.  
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