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Abstract. Confocal X-ray Fluorescence Microscopy (CXRF) employs overlapping focal
regions of two x-ray optics—a condenser and collector—to directly probe a 3D volume.
The minimum-achievable size of this probe volume is limited by the collector, for which
polycapillaries are generally the optic of choice. Recently, we demonstrated an alternative
collection optic for CXRF, consisting of an array of micron-scale collimating channels, etched
in silicon, and arranged like spokes of a wheel directed towards a single source position. The
optic, while successful, had a working distance of only 0.2 mm and exhibited relatively low total
collection efficiency, limiting its practical application. Here, we describe a new design in which
the collimating channels are formed by a staggered array of pillars whose side-walls taper away
from the channel axis. This approach improves both collection efficiency and working distance,
while maintaining excellent spatial resolution. We illustrate these improvements with confocal
XRF data obtained at the Cornell High Energy Synchrotron Source (CHESS) and the Advanced
Photon Source (APS) beamline 20-ID-B.

1. Introduction
Over the past 10 years, confocal x-ray fluorescence microscopy (CXRF) has become an
increasingly common approach to the problem of obtaining elemental composition distributions
in three dimensions. As described in several recent reviews [1], it has been demonstrated at
numerous synchrotrons worldwide as well as with lab-based sources, and applied to a wide
variety of applications. Recently, we demonstrated the first use of lithographically-etched
channels in silicon as a collection optic for CXRF [2]. In this approach, the collection optic
determines one of the three dimensions of the confocal probe volume, whereas the remaining
two are defined by the incident beam. Ref. [2] demonstrates an order-of-magnitude improvement
in resolution when compared with state-of-the-art demonstrations of CXRF, virtually all of
which use polycapillaries for collection. However, the optics employed in Ref. [2] have limited
practical appeal, exhibiting relatively poor collection efficiency compared to polycapillaries and
a very small working distance, approximately 0.2 mm. The collection efficiency of these optics,
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Figure 1. (a) Schematic illustration of CXRF configuration using collimating channels that are
formed from a set of staggered, absorbing pillars. The inset illustrates that the pillar edges are
tapered away from the axis of each channel to absorb reflected photons. (b) Scanning electron
micrograph of a channel array formed by an arrangement of staggered, tapered pillars etched
into a silicon substrate. The optic shown has an effective channel width of ≈2.2 µm, but the
effective channel depth is over 200 µm.

defined [2] as the fraction of fluorescent photons emitted from a point source captured and
transmitted by the optic, was limited by the channel depth, which varied from 30-50 µm for
channel widths of 1-5 µm. The small working distance of these optics was necessitated by the
large, diffuse reflectivity of the channels. As a result, the collimating power or angular selectivity
δ of the channels was much larger than the designed value, w/l, the ratio of the channel width
w and length l.1 Because the spatial resolution r of the channel array is approximately w+ δf ,
(where f is the working distance from the sample to optic), large δ requires small f in order to
achieve small values of r.

Here, we report fabrication of an improved channel array design, illustrated in figure 1a, that
addresses both of these limitations. A key feature of this approach is that channels are effectively
formed by a series of staggered pillars. This arrangement increases the distance between features
without increasing the channel width, allowing much greater etch depth. Figure 1b shows a
scanning electron micrograph (SEM) of an optic fabricated with such a design, illustrating
effective channel depths upwards of 200 µm. The optic in figure 1b was designed with 2 µm
channels, so that the effective aspect ratio of channels is approximately 100:1. The second
key feature of this design, indicated in the inset of figure 1a, is that the pillars forming each
channel are tapered away from the channel axis. Such tapering successfully reduces the angular
acceptance of the channels, thus allowing an increase in working distance while maintaing good
spatial resolution. Below, we present an overview of recent results obtained at both CHESS and
APS 20-ID-B using channel arrays that incorporate these ideas.

1 Note that this definition of δ is a factor of 2 smaller than that defined in Ref. [2], resulting in a compensating
change in the definition of channel resolution r.
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2. Results
Based on the principles described above, new optics were designed, fabricated and characterized
using techniques described in Ref. [2]. The angular selectivity of the channels is measured by
directing a well-collimated incident beam through a single channel, then rotating the optic about
its focal point and measuring the transmitted intensity. Two optics representing the new design,
having channel dimensions of 1 µm × 4 mm and 7 µm × 4 mm, were found to have angular
selectivities δ of 2.2 and 3.3 mrad, respectively, at 10 keV. These values represent a factor-of-two
or better reduction compared to the straight channels described in Ref. [2], and are sufficient to
allow modest increases in f without greatly increasing r, as shown below. Nevertheless, they are
significantly larger than their ideal, geometric collimation w/l, 0.25 and 1.75 mrad. Comparison
with ray-tracing simulations suggest that the broadening of δ for these channels is induced by
refraction at the front edges of the tapered pillars (see Fig. 1a).

We have employed these optics for confocal XRF at both the G1 station at CHESS and
APS station 20 ID B, for both XRF mapping and confocal XAFS [3, 4]. Tests at CHESS
employing the 7 µm × 4 mm channel array demonstrate that the increased channel depth of
these arrays gives rise to a commensurate increase in collection efficiency. To measure this
efficiency, we direct a focused incident x-ray beam, approximately 3µm in diameter, onto a
metal film, approximately 200-nm thick, such that the illuminated area of the film acts as a
point source of x-ray fluorescence. By comparing the fluorescence intensity from this source
measured with and without our optic in place, the collection efficiency may be determined as a
fraction of 4π. For this array, we obtain a value of 0.14% near 9 keV – a factor of 10 greater
than that reported previously, and nearly equivalent to that of a polycapillary measured with
an otherwise identical setup.

An additional, critical test of the new design is whether comparable resolution to that reported
in Ref. [2] could be achieved with a larger working distance f . This test was carried out at APS
20-ID-B, for which a KB mirror pair was used to focus the incident beam to approximately 1.5
µm (HZ) × 2µm (VT). The 1 µm ×4 mm channel array, with a working distance of 0.5 mm,
was employed. The depth resolution dR [2], was measured by scanning the surface of NIST
SRM 1834 through the confocal volume and fitting to the error function, modified to include
attenuation [5]. An example of such a scan and fit is shown as the inset to figure 2. The depth
resolution corresponds to the sharpness of the left-hand edge of this curve. Figure 2 shows the
values of dR obtained for different emission lines in the sample. The values are all close to 1.7
µm, rising to just above 2 µm below 4 keV.

Figure 3 shows a virtual 2D composition map, obtained with confocal XRF at CHESS,
of the near-surface region of a grain of dry brown rice [6]. In this case, the 7 µm × 4 mm
channel array was used. Due to its large variety of elemental constituents, the sample serves to
illustrate excellent spatial resolution (dR = 5 µm in this case) for low energy emission. The figure
shows that the outer surface of the rice grain, or bran, is composed of two layers with distinct
composition. Both layers contain potassium, but manganese and phosphorous are selectively
distributed in the upper and lower layers, respectively. Since the depth resolution of state-of-
the-art, but traditional CXRF implementations generally exceeds 20 µm below 4 keV [2], the
potassium and phosphorous concentrations in figure 3 would be severely obscured in CXRF
maps of this sample obtained with polycapillaries as the collection optic.

3. Summary
In this article, we have shown that lithographically-defined microchannel arrays constitute a
practical and advantageous collection optic for confocal x-ray fluorescence microscopy. Although
not shown here, we have also employed these optics for XANES in confocal mode. We anticipate
that these optics will significantly enhance and broaden the scope of application of confocal XRF,
particularly for light elements and samples with spatial variation on the 1 µm scale.
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Figure 2. (Color online) Depth resolution
dR(E) for a confocal XRF arrangement
employing a channel array with 1 µm× 4
mm nominal channel dimensions. The inset
shows the intensity distribution and fit for
potassium Kα, one of the curves employed to
obtain dR(E).

Figure 3. (Color online) Representation of
a 2D confocal XRF scan of the the near-
surface region of a grain of brown rice. In
the image, the Kα intensities of potassium,
phosphorus, and manganese are normalized to
their maximum, then encoded as red, green,
and blue, respectively.
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