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Abstract. Originally introduced in nuclear physics as a numerical laboratory to test different
many-body approximation methods, the Lipkin-Meshkov-Glick (LMG) model has received much
attention as a simple enough but non-trivial model with many interesting features for areas
of physics beyond the nuclear one. In this contribution we look at the LMG model as a
particular example of an SU(1, 1) Richardson-Gaudin model. The characteristics of the model
are analyzed in terms of the behavior of the spectral-parameters or pairons which determine
both eigenvalues and eigenfunctions of the model Hamiltonian. The problem of finding these
pairons is mathematically equivalent to obtain the equilibrium positions of a set of electric
charges moving in a two dimensional space. The electrostatic problems for the different regions
of the model parameter space are discussed and linked to the different energy density of states
already identified in the LMG spectrum.

1. Introduction
The Lipkin-Meshkov-Glick (LMG) model introduced in the nuclear physics community in a
series of three papers in the 60’s [1, 2, 3], was originally intended to test different many-body
approximation methods and it can be thought as a very schematic model for closed shell nuclei.
The model Hamiltonian can be written in terms of the elements of an SU(2) pseudo-spin algebra,
and consequently it is an one-quantum-degree of freedom integrable model with the Hamiltonian
playing the role of the unique integral of motion. However, simple does not imply trivial and
since its introduction different aspects of the model have been studied to gain insights into
theoretical concepts such as quantum phase transitions (QPT) [4, 5] and their relations with
quantum entanglement properties [6, 7], as well as excited state quantum phase transitions
(ESQPT) [8] and quantum decoherence [9]. Moreover, the LMG model has found applications
in many other areas of physics like quantum spin systems [10], ion traps [11], Bose-Einstein
condensates in double wells [12] or in cavities [13], and in circuit QED [14].

In this contribution we look at the LMG model from the perspective of the Richardson-Gaudin
(RG) models for the particular case of a non-compact SU(1, 1) algebra. The RG models are
Bethe ansatz solvable models which are constructed from a set of L copies of a given Lie algebra.
With this set of copies one can construct L independent, quadratic an mutually commuting
operators [15]
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m, and E−αm are the Cartan-Weyl weight, raising and lowering operators of the m-th
copy of the given Lie algebra, α are its roots, r its rank, and ξm is a linear combination of the
weight operators ξm =

∑r
i=1 k

iHi
m. To ensure the commutativity of the operators, the functions

X(u) and Z(u) can take three different forms defining, respectively, the rational, trigonometric
and hyperbolic families of the RG models: X(u) = Z(u) = 1/u; X(u) = cscu, Z(u) = cotu;
and X(u) = csch(u), Z(u) = coth(u). The operators depend on L+ r free parameters (zm and
ki), additionally any function of the Rm operators defines an integrable model. The number of
free parameters allows to link the RG model with a great number of different physical models
[16, 17]. The eigenfunctions and eigenvalues of the Rm can be obtained in terms of a set of
spectral parameter or pairons which solve a set of non-linear equations, the so-called Richardson
equations. Every solution set of these equations defines a common eigenstate of the operators
Rm. It is well known [18] that the set of non-linear Richardson equations is mathematically
equivalent to find the equilibrium positions, in a two dimensional plane, of a set of electrical
charges (the pairons) in presence of a fixed external electric field or fixed charges (whose positions
and values are given by the free parameters zn and ki).

In reference [17], it was shown that the LMG model can be obtained as a RG model for
the particular case of two copies of an SU(1, 1) algebra. In reference [19] this relation was
exploited to explore the LMG from the numerical solutions obtained in the RG models. In this
contribution some aspects of this relation are discussed, in particular the LMG parameter space
is classified in terms of the different families (rational, trigonometric and hyperbolic) of the
SU(1, 1) RG models. This classification explains naturally the different regimes identified in the
energy density of states (EDoS) found in the LMG spectrum [20]. This contribution is organized
as follows, in section 2 the explicit relation between the LMG and the SU(1, 1) RG models is
established. In section 3 the different regimes in the parameter space for the EDoSs of the LMG
model are presented and they are linked to the different electrostatic problems associated to the
families of the RG models. Conclusions are given in the last section.

2. LMG and SU(1, 1) Richardson-Gaudin models
The original physical realization of the LMG model consists of N fermions moving in two N -
fold degenerated levels separated by an energy ε. In terms of fermionic operators, a†pσ with
p = 1, .., N and σ = ±, the LMG Hamiltonian reads

HL =
1
2
ε
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The problem is strongly simplified by noting that the LMG Hamiltonian can be written in terms
of SU(2) pseudo-spin operators (S+ =

∑
p a
†
p+ap−, S− =

∑
p a
†
p−ap+ and Sz = 1

2
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in the following form

HL = εSz +
λ

2
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−
)
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2
(S+S− + S−S+) . (2)

From the previous expression it is clear that the invariant subspaces of the LMG Hamiltonian
can be classified by the eigenvalues [j(j + 1)] of the Casimir operator S2. For a given pseudo-
spin j, two extra invariant subspaces exist which can be labeled by the eigenvalues (p = ±1)
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of the parity operator P = eiπ(Sz+j). The ground state of the model belongs to the subspace
with maximal pseudo-spin j = N/2 and positive parity. The connection between the LMG
Hamiltonian and the SU(1, 1) RG models, can be obtained [17] by using the Schwinger boson

representation of the SU(2) algebra: Sz = b†2b2−b†1b1

2 , S+ = b†2b1, and S− = b†1b2, where bi are
boson operators. With these boson operators we construct two copies (i = 1, 2) of the rank-1
SU(1, 1) algebra

K+
i =

1
2
b†ib

†
i , K−i =

1
2
bibi, Kz

i =
1
2

(
b†ibi +

1
2

)
, (3)

where the ladder (K+,K−) and weight (Kz) operators satisfy the commutation relations
[Kz,K±] = ±K± and [K+,K−] = −2Kz. The only root of the algebra is |α|2 = 2 and the
Cartan Weyl basis is given by H1 =

√
2Kz, Eα = K+ and E−α = −K−. With these two copies

and choosing k1 = 1/(
√

2g) in Eq.(1), we construct two integrals of motion
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where i = 1, 2, and we have reparametrized [17] the functions X(zi− zj) = Xij and Z(zi− zj) =
Zij in the way X21 = −X12 = 1+st2

2t and Z21 = −Z12 = 1−st2
2t , with s = −1, 0, 1 corresponding,

respectively, to the hyperbolic, rational and trigonometric versions of the SU(1, 1) RG models.
The parameters t and g are completely free parameters. By taking the difference between the
previous integrals of motion, we obtain the LMG Hamiltonian

HL = ε(gR2 − gR1)− γ

4
, with gX21 = −λ

ε
, and gZ21 =

γ

ε
. (5)

The relation between the LMG Hamiltonian parameters (λ, γ, ε) and those of the SU(1, 1) RG
models are λ

ε = −g 1+st2

2t and γ
ε = g 1−st2

2t . In order to obtain a simpler parameter space, we
introduce the rescaled parameters [4] (γx, γy) ≡ 2j−1

ε (γ + λ, γ − λ) = (2j − 1)g
(
−st, 1

t

)
. This

relation allows to classify the quadrants of the LMG parameter space of Fig.1 in terms of the
hyperbolic (s = −1) and trigonometric (s = 1) RG models. The first (s = −1, g > 0) and third
(s = −1, g < 0) quadrants correspond to the hyperbolic RG model, whereas the second (s = 1,
g > 0) and fourth (s = 1, g < 0) are associated with the trigonometric model. The eigenvalues
of the LMG model in terms of the pairons (eα) of the RG model, for pseudo-spin j and positive
parity, are given by EL = gtε

∑j
α

1+se2α
t2−e2α

. The unnormalized eigenvectors common to the two
integrals of motion (Ri) and, consequently, to the LMG Hamiltonian are

j∏
α=1

(
b†1b

†
1

eα + t
+

b†2b
†
2

eα − t

)
|0〉, (6)

with |0〉 the boson vacuum. The equations which determine the pairons and their mapping to a
two-dimensional electrostatic problem for the different version of the RG models are discussed
in the next section. Likewise the electrostatic systems are linked to the different regimes for the
EDoS already found in [20] for the LMG energy spectrum.

3. Energy Density for the LMG states and the RG electrostatic mapping
In figure 1 the parameter space of the LMG model is classified according to the different EDoSs
that can be found in the LMG spectrum. Typical profiles of these densities are shown for the
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Figure 1. Central plot: parameter space of the LMG model classified according to the different
structures that can be found in the Energy Density of States (horizontal, vertical, diagonal and
white regions). Typical profiles of these densities (ρ) are shown in the plots surrounding the
central one, the corresponding regions are indicated by the squares inside the plots. The density
profiles were calculated numerically for the positive sector of finite (j = 400) LMG Hamiltonians.
The first and third quadrants in the central parameter space correspond to the hyperbolic RG
model, whereas the second and fourth are associated with the trigonometric RG family.

different regions. These densities were calculated numerically for the parity positive sector of
finite (j = 400) LMG systems. The white region around the non-interacting (γx = γy = 0)
case shows monotone EDoSs, with energies in the interval E ∈ [−j, j]. As we move away from
the origin a transition to the regions signaled by horizontal lines takes place. These regions are
characterized by a sole peak in the EDoS occurring at E/j = −1 in the left and bottom horizontal
lined regions, and at E/j = 1 in the right and top horizontal lined ones. This peak signals an
excited state quantum phase transition [21, 8] which transform in an ordinary (Ground-state)
quantum phase transition in the left and bottom border of the white region. Away from the
axis of the parameter space, two types of regions can be identified. The first type signaled
by vertical lines in the second and fourth quadrants of the parameters space, is characterized
by two peaks in the EDoS occurring at E = −j and E = +j. The double peak structure of
the EDoS is related to excited state quantum phase transitions which evolve, respectively, from
the ground and from the most excited state. Finally, the second type of regions (signaled by
diagonal lines in Figure 1) in the first and third quadrants of the parameter space, presents
EDoSs with a peak and a discontinuity. This discontinuity occurs at E = −j in the left bottom
diagonal lined region, and at E = j in the other one. The states with energies between the peak
and the discontinuity present avoiding crossings, whereas the states beyond the discontinuity
show a very small energy density. The qualitative differences between the EDoSs of the first-
third and second-fourth quadrants found a natural explanation when we look at the equivalent
electrostatic problem which determine the pairons of the RG solution. These pairons determine,
in turn, the wave function and energies of the LMG Hamiltonian as it was discussed in the
previous section. The equations determining the pairons can be written [19] in the following
form, where it is clear their analogy with an electrostatic problem in the complex plane

QC
eα − PC

+
QD

eα − PD
+

1
4

(
1

eα + t
+

1
eα − t

)
+

M∑
β 6=α

1
eα − eβ

= 0. (7)
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Figure 2. Fixed charges of the equivalent electrostatic problems in the complex plane for the
trigonometric (panel a) and hyperbolic (panel c) RG models. The effective charges QC and QD
are complex conjugated for the trigonometric case, whereas in the hyperbolic case they are real.
The other two effective charges have a value 1/4 and they are located in the real axis at ±t for
both hyperbolic and trigonometric cases. Two typical equilibrium configurations for two LMG
excited states are shown in panel b and c for the trigonometric and hyperbolic cases respectively.
A value j = 15 was used.

The previous equations describe the electrostatic interaction of a set of j pairons (whose positions
are eα) with positive unit charge in a two dimensional space. The first two terms in (7) describe
the electrostatic interaction of the pairons with two effective charges QC and QD. For the
trigonometric case (s = 1) the effective charges are complex QC = −2j−1

4 − i
4g , QD = Q∗C , and

they are located in PC = i, PD = −i. Whereas in the hyperbolic case (s = −1) both, the charges
and their positions, are real, QC = −2j−1

4 + 1
4g and QD = −2j−1

4 − 1
4g , located in PC = −1 and

PD = 1 respectively. The third term in (7) represents the interaction of the pairons with two
charges 1

4 at positions ∓t. Finally, the fourth term corresponds to the mutual repulsion between
pairons.

The panels (a) and (c) of Fig. 2 show the position of the effective fixed charges for
the trigonometric and hyperbolic RG families. Each independent solution of the Richardson
equations determines the equilibrium position of the pairons in the complex plane. For the
trigonometric case, the dynamics of the pairons as a function of the model parameters takes place
entirely in the real axis (panel (b) of Fig.2). This result can be understood from the electrostatic
mapping as a consequence of the different sign of the imaginary part of the effective charges
QC and QD = Q∗C . These imaginary parts produce effective electric fields whose components
parallel to the imaginary axis cancel mutually only in the real axis, constraining the equilibrium
positions of the pairons to this axis. Contrarily to this, for the hyperbolic case the effective
charges QC and QD are real and located at the real axis at positions ±1, moreover the mutual
sign of these charges can be different depending on the values of the LMG parameters. When
the mutual sign of these charges is negative, the pairons can expand in the complex plane
forming arcs around the position of the effective charges QC or QD. Panel (d) of Fig.2 shows
a such configuration with an arc around the QD charge. For particular values of the coupling
constant [g = ±1/(2j + 1 − 2n), with n a positive integer] n pairons can collapse into the
position of the effective charge QC or QD. Similar collapses were found in the SU(2)-RG-
hyperbolic model for the px + ipy pairing interaction [22]. In that model the collapses of the
pairons were associated with a third-order QPT. In the present model the collapses are associated
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with other singular behavior: the crossing of different parity states at exactly the same values
of the coupling constant where collapses take place. The qualitative differences between the
electrostatic systems for the trigonometric (second and third quadrants) and hyperbolic (first
and third quadrants) RG models, explain qualitatively the different EDoSs found in the LMG
parameter space of Fig. 1.

4. Conclusions
The Lipkin-Meshkov-Glick model was studied from the perspective of a particular realization
of the Richardson-Gaudin models, associated with two bosonic copies of an SU(1, 1) algebra.
In the parameter space of the LMG model different profiles of the energy density of states can
be identified. The different profiles were related with the kind of electrostatic problem that
determines the pairons or spectral parameters of the RG models. The EDoSs with a peak and
a discontinuity are associated with the hyperbolic RG models, for which the pairon dynamics
as a function of the model parameters takes place in the whole complex plane. Contrarily,
for the trigonometric RG family, where the electrostatic pairon positions are restricted to the
real axis, the EDoSs present a structure with two peaks at energies E = −j and E = j. As
discussed in Ref.[23], the pairon dynamics can help to identify significant physical phenomena.
The LMG model is not an exception, for the hyperbolic case the pairon dynamics allows the
collapse of pairons into the position of an effective charge. This singular behavior is related with
the crossing between different parity states and the avoiding crossing between states of the same
parity. Finally, the insights gained in the study of the LMG model, where the set of pairons of
every state in the spectrum is easily accessible, can help to identify general mechanisms related
with ubiquitous phenomena such as excited state quantum phase transitions.
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