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Abstract. We develop a framework for constraining a certain class of theories of nonminimally
coupled (NMC) gravity with Solar System observations.

1. Introduction
We consider the possibility of constraining a class of theories of nonminimally coupled gravity
[1] by means of Solar System experiments. NMC gravity is an extension of f(R) gravity where
the action integral of General Relativity (GR) is modified in such a way to contain two functions
f1(R) and f2(R) of the space-time curvature R. The function f1(R) has a role analogous to
f(R) gravity, and the function f2(R) yields a nonminimal coupling between curvature and the
matter Lagrangian density. For other NMC gravity theories and their potential applications,
see, e.g., [2, 3, 4, 5, 6].

NMC gravity has been applied to several astrophysical and cosmological problems such as
dark matter [7, 8], cosmological perturbations [9], post-inflationary reheating [10] or the current
accelerated expansion of the Universe [11].

In the present communication, by extending the perturbative study of f(R) gravity in [12],
we discuss how a general framework for the study of Solar System constraints to NMC gravity
can be developed. The approach is based on a suitable linearization of the field equations of
NMC gravity around a cosmological background space-time, where the Sun is considered as a
perturbation. Solar System observables are computed, then we apply the perturbative approach
to the NMC model by Bertolami, Frazão and Páramos [11], which constitutes a natural extension
of 1/Rn (n > 0) gravity [13] to the non-minimally coupled case. Such a NMC gravity model is
able to predict the observed accelerated expansion of the Universe. We show that, differently
from the pure 1/Rn gravity case, the NMC model cannot be constrained by this perturbative
method so that it remains, in this respect, a viable theory of gravity. Further details about the
subject of the present communication can be found in the manuscript [14].
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2. NMC gravity model
We consider a gravity model with an action functional of the type [1],

S =

∫ [
1

2
f1(R) + [1 + f2(R)]Lm

]√
−g d4x,

where f i(R) (i = 1, 2) are functions of the Ricci scalar curvature R, Lm is the Lagrangian density
of matter and g is the metric determinant. By varying the action with respect to the metric we
get the field equations(

f1R + 2f2RLm
)
Rµν −

1

2
f1gµν =

(
1 + f2

)
Tµν +∇µν

(
f1R + 2f2RLm

)
, (1)

where f iR ≡ df i/dR and ∇µν = ∇µ∇ν − gµν�. We describe matter as a perfect fluid with
negligible pressure: the Lagrangian density of matter is Lm = −ρ and the trace of the energy-
momentum tensor is T = −ρ. We write ρ = ρcos+ρs, where ρcos is the cosmological mass density
and ρs is the Sun mass density.

We assume that the metric which describes the spacetime around the Sun is a perturbation
of a flat Friedmann-Robertson-Walker (FRW) metric with scale factor a(t):

ds2 = − [1 + 2Ψ(r, t)] dt2 + a2(t)
(
[1 + 2Φ(r, t)] dr2 + r2dΩ2

)
,

where |Ψ(r, t)| � 1 and |Φ(r, t)| � 1. The Ricci curvature of the perturbed spacetime is
expressed as the sum

R(r, t) = R0(t) +R1(r, t),

where R0 denotes the scalar curvature of the background FRW spacetime and R1 is the
perturbation due to the Sun. Following Ref. [12], we linearize the field equations assuming
that

|R1(r, t)| � R0(t), (2)

both around and inside the Sun. This assumption means that the curvature R of the perturbed
spacetime remains close to the cosmological value R0 inside the Sun. In GR such a property of
the curvature is not satisfied inside the Sun. However, for f(R) theories which are characterized
by a small value of a suitable mass parameter (see next section), condition (2) can be satisfied.
For instance, the 1/Rn (n > 0) gravity model [13] satisfies condition (2), as shown in [12, 15].

Eventually, we assume that functions f1(R) and f2(R) admit a Taylor expansion around
R = R0 and that terms nonlinear in R1 can be neglected in the expansion. We use the notation
introduced by [12] (for i = 1, 2):

f i0 ≡ f i(R0) , f iR0 ≡
df i

dR
(R0) , f iRR0 ≡

d2f i

dR2
(R0).

3. Solution of the linearized field equations
The details of the following computations can be found in the paper [14]. First we linearize the
trace of the field equations (1). Using condition (2), we neglect O(R2

1) contributions but we keep
the cross-term R0R1. Introducing the potential U =

(
f1RR0 + 2f2RR0Lm

)
R1, we get

∇2U −m2U = −1

3

(
1 + f20

)
ρs +

2

3
f2R0ρ

sR0 + 2ρs�f2R0 + 2f2R0∇2ρs,

where m2 denotes the mass parameter

m2(r, t) =
1

3

[
f1R0 − f2R0Lm

f1RR0 + 2f2RR0Lm
−R0 −

3�
(
f1RR0 − 2f2RR0ρ

cos
)
− 6ρs�f2RR0

f1RR0 + 2f2RR0Lm

]
. (3)
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When f2(R) = 0 we recover the mass formula of f(R) gravity theory found in [12]. In the
following we assume that |mr| � 1 at Solar System scale. Under this assumption the solution
for R1 outside the Sun is given by

R1(r, t) =

[
−1

3

(
1 + f20

)
+ 2

3f
2
R0R0 + 2�f2R0

4π
(
2f2RR0ρ

cos − f1RR0

) ]
MS

r
, (4)

where MS is the mass of the Sun. Then we linearize the field equations (1) obtaining

(
f1R0 + 2f2R0Lm

)(
∇2Ψ +

1

2
R1

)
−∇2

[(
f1RR0 + 2f2RR0Lm

)
R1

]
=
(
1 + f20

)
ρs − 2f2R0∇2ρs,

(
f1R0 + 2f2R0Lm

)(
−d

2Ψ

dr2
+

2

r

dΦ

dr

)
− 1

2
f1R0R1 +

2

r
f1RR0

dR1

dr
+

4

r
f2RR0

∂ (LmR1)

∂r
=

4

r
f2R0

dρs

dr
.

Using the divergence theorem and the solution (4) for R1, from the first equation we obtain the
function Ψ outside of the Sun:

Ψ(r, t) = − 2

3r

(
1 + f20 + f2R0R0 + 3�f2R0

) ∫ RS

0

ρs(x)

f1R0 + 2f2R0Lm(x)
r2 dr,

where RS is the radius of the Sun. If the following condition is satisfied,∣∣2f2R0

∣∣ ρs(r)� ∣∣f1R0 − 2f2R0ρ
cos(t)

∣∣ , r ≤ RS, (5)

then the function Ψ is a Newtonian potential:

Ψ(r, t) = −GMS

r
, G(t) =

1 + f20 + f2R0R0 + 3�f2R0

6π
(
f1R0 − 2f2R0ρ

cos
) r ≥ RS, (6)

where G(t) is an effective gravitational constant. Since G depends on slowly varying cosmological
quantities we have G(t) ' constant, so that Ψ(r, t) ' Ψ(r).

The solution for the function Φ is computed from the second of the linearized field equations,
and we obtain Φ(r) = −γΨ(r), where the PPN parameter γ depends on cosmological quantities
and it is given by

γ =
1

2

[
1 + f20 + 4f2R0R0 + 12�f2R0

1 + f20 + f2R0R0 + 3�f2R0

]
.

When f2(R) = 0 we find the known result γ = 1/2 which holds for f(R) gravity theories which
satisfy the condition |mr| � 1 and condition |R1| � R0, as it has been shown in [12]. The 1/Rn

(n > 0) gravity theory [13], where f(R) is proportional to (R+ constant/Rn), is one of such
theories that, consequently, have to be ruled out by Cassini measurement.

4. Application to a NMC cosmological model
We consider the NMC gravity model proposed in [11] to account for the observed accelerated
expansion of the Universe:

f1(R) = 2κR, f2(R) =

(
R

Rn

)−n
, n > 0, (7)

where κ = c4/16πGN , GN is Newton’s gravitational constant, and Rn is a constant. This model
yields a cosmological solution with a negative deceleration parameter q < 0, and the scale factor
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a(t) of the background metric follows the temporal evolution a(t) = a0 (t/t0)
2(1+n)/3, where

t0 is the current age of the Universe. Using the properties of the cosmological solution found
in [11] the mass parameter (3) can be computed obtaining (we refer to [14] for details of the
computation):

m2 =
µ(n)ρcos + ν(n)ρs

ρcos + ρs
R0, R0(t) =

4(1 + 4n)(1 + n)

3t2
,

where µ(n) and ν(n) are rational functions of the exponent n. In [14] it is shown that the
condition |mr| � 1 imposes the extremely mild constraint n� (1/6)R2

SR0 ∼ 10−25. Moreover,
from the properties of the cosmological solution [11] we have f2R0ρ

cos(t)/κ = −2n/(4n+ 1), from
which it follows that condition (5) is incompatible with the previous constraint n� 10−25:∣∣∣∣ κ

f2R0ρ
cos(t)

− 1

∣∣∣∣ ρcos =

(
3 +

1

2n

)
ρcos(t)� ρs(r)→ n� ρcos

2ρs
∼ 10−33.

We now check the assumption |R1| � R0. The previous result shows that we can not rely on the
validity of Newtonian approximation. Hence we cannot use the effective gravitational constant
G defined in (6) for the estimate of the ratio R1/R0, so that we resort to Newton’s gravitational
constant GN = c4/16πκ. The value of this ratio outside the Sun can be computed from the
exterior solution (4) for R1, while the result for the interior solution requires a more involved
computation, based on a polynomial model of the mass density ρs, that can be found in [14]:

R1

R0
≈ 1 + 4n

n(1 + n)

GNMS

r
for r ≥ RS,

R1

R0
≈ 1

1 + n
for r < RS.

Though |R1| � R0 for n � 1, the interior solution shows that non-linear terms in the Taylor
expansion of f2(R) cannot be neglected, contradicting our assumption at the end of Section 2:

f2(R) = f20

[
1− nR1

R0
+
n(n+ 1)

2

(
R1

R0

)2

− 1

6
n(n+ 1)(n+ 2)

(
R1

R0

)3 ]
+O

((
R1

R0

)4
)
.

The lack of validity of the perturbative regime leads us to conclude that the model (7) cannot
be constrained by this method, so that it remains, in this respect, a viable theory of gravity.
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