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Abstract. Some years ago we initiated a program to define Noncommutative Topological 
Quantum Field Theory (see [1]). The motivation came both from physics and mathematics: On 
the one hand, as far as physics is concerned, following the well-known holography principle of 
't Hooft (which in turn appears essentially as a generalisation of the Hawking formula for black 
hole entropy), quantum gravity should be a topological quantum field theory. On the other 
hand as far as mathematics is concerned, the motivation came from the idea to replace the 
moduli space of flat connections with the Gabai moduli space of codim-1 taut foliations for 3 
dim manifolds. In most cases the later is finite and much better behaved and one might use it to 
define some version of Donaldson-Floer homology which, hopefully, would be easier to 
compute. The use of foliations brings noncommutative geometry techniques immediately into 
the game. The basic tools are two: Cyclic cohomology of the corresponding foliation C*-
algebra and the so called "tangential cohomology" of the foliation. A necessary step towards 
this goal is to develop some sort of Hodge theory both for cyclic (and Hochschild) 
cohomology and for tangential cohomology. Here we present a method to develop a Hodge 
theory for tangential cohomology of foliations  by mimicing Witten's approach to ordinary 
Morse theory by perturbations of the Laplacian. 

 

Introduction 
Let F be a smooth p-dim foliation on a closed n-dim manifold M (hence q = n – p is the codim), 
equipped with an invariant transverse measure Λ.  It is well known that  there exist real valued smooth 
functions on M having only Morse or birth - death singularities. We shall denote by h (resp v) the 
horizontal or tangential (resp vertical or transverse) local coordinates and by L x the leaf through the 
point x on M.  
For any smooth real function φ on M we denote by d F φ the differential of φ in the leaf (horizontal or 
tangential) directions. A point a on M for which the leaf differential vanishes will be called a 
tangential singularity for φ. For such a singularity the horizontal or tangential Hessian d 2 

F φ makes 
sense and in local coordinates (h,v) one has 

d F φ = Σ 1≤ I ≤ p ∂φ / ∂hi (h,v) 
and  

d2
Fφ(h,v)=((∂2φ / ∂hi∂hj)(h,v))ij 
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The index of a tangential singularity a on M is defined as the number of minus signs in the signature of 
the quadratic form  d 2 

F φ(a). 
 
Definition: A tangential singularity a on M of a smooth real function φ  on M as above is called a  
Morse singularity if d 2 

F φ(a) is non-singular. 
 
We denote by T(φ) (resp M(φ), Mi(φ)) the set of all tangential singularities (resp. of Morse 
singularities, Morse singularities of index i, where 0 ≤ i ≤ p) of the function φ.  The first complication 
emerges since in this case a good definition for a tangential (or horizontal) Morse function cannot be 
reduced to simply a smooth function on M having only tangential Morse singularities. This is 
explained in the following Lemma: 
 
Lemma: Let (M,F) be as above. Assume that there exists a smooth function φ again as above with only 
tangential Morse singularities. Then the set of all tangential Morse singularities of φ is a closed q-dim 
submanifold transverse to the foliation. 
 
Proof: We suppose that φ is a smooth function on M such that for any leaf L in the quotient space M/F 
the restriction of φ on the leaf L has no degenerate critical points. Then the map 
 
x � (x,dFφ(x)) 
 
from M to T*F is transverse to the zero section of T*F since its differential is given on any foliation 
chart Ω = U X T by 
 
d(dFφ)(h,v)(Xh,Xv) = ((Xh,Xv),φhh(h,v)Xh + φhv(h,v)Xv) 
 
where the subscript  h, v denotes partial derivative with respect to the corresponding coordinates and 
det(φhh(h,v)) ≠ 0 for a Morse singularity with coordinates (h,v). This implies first that the set of all 
Morse singularities   M(φ) is a closed submanifold of M with dim(M(φ)) = codim(F) and second that  
M(φ) is transverse to the foliation F because for any non-zero tangent vector X = (Xh,Xv) of M(φ) at 
the point (h,v), one has that 
 
φhh(h,v)Xh + φhv(h,v)Xv = 0. 
 
This means that the transverse component Xv of X ≠ 0 is non-zero which proves that M(φ) is 
transverse to the foliation F. This concludes the proof. 
 

◊ 
It turns out that many interesting foliations have no closed transversals and hence any good notion of 
tangential Morse function should allow degenerate critical points in the leaf direction. (However taut 
foliations which are the ones appearing in the Gabai moduli space [2] do have closed transversals). We 
call almost Morse function a smooth function φ as above with degenerate critical points which only 
occure at a negligible set of leaves (namely we allow degenerate critical points but not too many). A 
good almost Morse function is an almost Morse function which is generically unfolded in the sense of 
Igusa [3] (roughly this means that it has only birth-death singularities, namely points where critical 
points cancel or created in pairs). 
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Witten’s perturbation by a Morse function [4]-Tangential version 

Let (M,F) be a foliation as above equipped with a holonomy invariant transverse measure Λ. We 
choose a smooth Riemannian metric on M and denote by Δk

L (0 ≤ k ≤ p) the corresponding Laplace 
operator on the leaf L acting on k-forms. We know that the bundle of Hilbert spaces is square 
integrable and thus has a well-defined Murray-von Neumann dimension 

βk = dimΛ (Ker (Δk
L)) < ∞ 

which does not depend on the choice of metric. Assume moreover that codim(F) ≤ dim(F). 

Let φ be a smooth real function on M which is good almost Morse function and τ a positive real 
parameter. For each leaf L and 0 ≤ k ≤ p we denote by d k

τ,L the closure (in L2 (L,Λ(Τ*F), space of 
square integrable forms on the leaf L) of the operator which sends each smooth k-form ω on L to the 
smooth (k+1)-form again on L e-τφ dk

L(eτφω). 

We shall call Witten’s tangential Laplacian the measurable filed (Δk
τ,L)L which is defined in the 

obvious way. Then we prove that Δk
τ computes the (L2) tangential cohomology of (M,F): 

Proposition: The fields (Ker (Δk
τ,L )L and  (Ker (Δk

L)L) of Hilbert spaces are measurably isomorphic 
and one has that 

βk = dimΛ (Ker (Δk
τ,L)L) < + ∞ 

for any positive real τ and 0 ≤ k ≤ p. 

Proof (Sketch): The proposition can be proved following the steps below: 

1.First one has to prove that the operator dk
τ = (dk

τ,L)L is a differential operator which is elliptic along 
the leaves of F. This can be proved using an argument similar to the one used by Connes in ([5]) to 
prove the transversal index theorem. 

2. Next one proves that the adjoint  of dk
τ,L is the closure of the operator which sends each smooth 

(k+1)-form ω on L to the smooth k-form again on L eτφ (dk
L)*(e-τφω) where 

(dk
L)* = (-1)pk+1 *dk

L* ,  

where * is the Hodge star operator on the leaf L defined via the Remanian metric. 

3. We note that Δk
τ = (Δk

τ,L)L  is a field of measurable positive operators acting on the Hilbert space of 
square integrable k-forms on the leaf L. Moreover Δk

τ  is elliptic along the leaves. 

4. For any leaf L and 0 ≤ k ≤ p we denote by Tk
L the bounded operator on L2(L, ΛkT*F) defined by 

Tk
L(ω)(x) = e-τφ(x)ω(x),  for ω in L2(L, ΛkT*F). 

It is clear that Tk
L is invertible and defines an element of  L∞(M/F, ΛkT*F). Next we set  

Uk
τ,L = Qk

τ,L T k
L Qk

L 
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where Qk
τ,L (resp. Qk

L) denotes the orthogonal projection onto the subspace Ker (Δk
τ,L) (resp. onto Ker 

(Δk
L)). We thus define a measurable field (Uk

τ,L)L of endomorphisms of the random Hilbert space 
(L2(L, ΛkT*F))L, such that Ker (Δk

τ,L) is a superset of  Uk
τ,L(Ker (Δk

L)). 

We want to show that (Uk
τ,L)L belongs to L∞(M/F, Λ kT*F) and defines an isomorphism of Hilbert 

spaces from (Ker (Δk
L))L to (Ker (Δk

τ,L))L. One then has (omitting the subscript L): 

dk
τ = T k+1

τ dk(Tk
τ)-1 

and hence 

Tk
τ(Ker dk) = Ker dk

τ 

Tk+1
τ(cl.Im(dk)) = cl.Im(dk

τ). 

But it follows from Hodge theory that one has the following orthogonal decompositions: 

Ker(dk) = Ker(Δk) + cl.Im(dk-1) 

Ker(dk
τ) = Ker(Δk

τ) + cl.Im(dk-1
τ), 

and then from equations (1) and (2) it follows that Tk
τ is given in those decompositions by a 2 X 2 

matrix with the upper left entry being Uk
τ, the lower right entry being Bk

τ, the upper right entry being 0 
and the lower left entry being any element and where the entry Bk

τ,L = Τk
τ,L | cl.Im(dk-1

L), namely Τk
τ,L 

restricted to cl.Im(dk-1
L), the closure of the Image of dk-1

L.We thus deduce that Uk
τ is an isomorphism 

from (Ker (Δk
L))L onto (Ker (Δk

τ,L))L and hence 

βk = dimΛ (Ker (Δk
L)L) = dimΛ (Ker (Δk

τ,L)L) 

and this holds for all τ > 0. As βk< + ∞ then an argument similar to  Connes [6] completes  the proof. 
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