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Abstract. We introduce the method of minimal subtraction in the computation of critical

exponents of Lifshitz type generic competing systems using massless fields. We first treat the

anisotropic cases, when several independent momentum scales define the renormalization group

invariance of the scalar fields. In addition, we analyze the isotropic sector. We compute critical

exponents using diagrammatic techniques at least up to two-loop level and show their equivalence

with other methods presented in the literature.

1. Introduction

The employment of field theory along with renormalization group arguments are the most
appropriate methods in the determination of critical properties of Lifshitz generic competing
systems. In particular, critical exponents were determined using normalization conditions either
in the massless [1, 2] or in the massive setting [3]. In this work we evaluate critical exponents in
the massless field formulation by introducing a minimal subtraction scheme. It provides a new
renormalization method to these systems and sheds new light on the interesting mathematical
features of the perturbation structure of this higher derivative scalar field theory.

The simplest physical system possessing this sort of critical behavior can be realized using
the language of magnetic system. The anisotropic cases can be understood as a d-dimensional
Ising model with ferromagnetic interactions between nearest-neighbor spins, with additional
antiferromagnetic second neighbors couplings along a m2-dimensional subspace as well as
ferromagnetic third neighbors exchange forces along m3 space directions and so on, such that
the alternate interactions take place up to the L-th neighbor spins inside an mL-dimensional
subspace, with all (competing) subspaces orthogonal among each other. The isotropic situation
occurs whenever there is only one type of subspace, i.e., d = mL. The generic competing systems
are described by the following bare Lagrangian density[1]:
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From now on we focus our attention at the Lifshitz point t0 = 0. Furthermore, the critical
region we are interested in is characterized by the condition δon = τnn′ = 0. Multiplicative
renormalizability can be easily stated in terms of one-particle irreducible (1PI) vertex parts,
which will be the basic objects needed in our quest to determine the critical exponents. Hereafter
we shall restrict our analysis to the vertex parts which display primitive divergences, namely
Γ(2), Γ(4) and the vertex part with an insertion of composite operator Γ(2,1). The interested
reader should consult the book [4] in order to fix the nomenclature utilized in the remainder.

2. Anisotropic minimal subtraction

The primitively divergent vertex parts in the massless theory can be renormalized solely at
nonvanishing momentum scale κn of the nth (mn-dimensional) subspace. This implies a
multiscale renormalization group invariance with n independent coupling constants: each vertex
part is labeled by the index n specifying its dependence on the appropriate coupling. The flow
in momentum space in each subspace is generated by a momentum scale κn (n = 1, ..., L). In
order to get rid of all dimensionful parameters away from the critical dimension we write the
coupling constants in terms of dimensionless couplings un and u0n. Hence, the renormalized
coupling constants read gn = κnǫLn un, whereas the bare ones are given by λn = κnǫLn u0n. In
order to pick out the required subspace labeled by n, we choose un = δnn′un′ and κn = δnn′κn′ ,
i.e., we set to zero all coupling constants and momentum scales with n 6= n′ implicitly into the
vertex parts on that subspace.

The renormalized vertices can be written in terms of the bare vertices and external mo-
mentum configuration as Γ
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As far as renormalization by minimal subtraction is concerned, these functions should be finite
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The Feynman diagrams of the vertex functions are utilized in the calculation of the coefficients
ain, bin and cin. The minimal set of integrals which will be necessary in our undertaking are
represented by the following expressions:
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In the last expressions P and p3 are external momenta perpendicular to the mn competing
subspaces (n = 2, .., L). We are interested only in the singular parts of those integrals. Note
that the singular contributions of I2 and I4 depend on the external momenta only through the
combinations (P =)p1 + p2, p1 + p3, p2 + p3 and (K ′

(n) =)k′1(n) + k′2(n), k
′

1(n) + k′3(n), k
′

2(n) + k′3(n).

Therefore, we can express the poles of the integrals in terms of either the external momenta P
along the noncompeting axes or as a function of K ′

(n) (n = 2, ...L).
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(1) ≡ P as the momentum associated with the m1(= d −
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noncompeting subspace. Now, we require the minimal subtraction of the poles in ǫL of
the bare vertex parts. In the massless formulation the bare vertex parts can be written
in terms of the minimum number of Feynman graphs in a very simple form. Indeed,

their perturbative expansions are given by Γ
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The singular parts of each integral can not be calculated analytically in the exact form.
However, using the orthogonal approximation [1, 2] we can perform the various integrals in
each subspace independently. The singular contributions of the integrals are then given by
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We have at hand all elements to determine the normalization functions Zφ, Z̄φ2 and the
bare coupling constants u0n(un). Minimal subtraction of dimensional poles in ǫL has two
consequences. First, the singular terms proportional to the logarithmic integrals Eq. (??)
are eliminated in the process. Second, the expansions of u0n, Zφ and Z̄φ2 turn out to be given
by the expressions:
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They are the same from those obtained using normalization conditions and the remaining
exponents can be obtained from these two by the scaling relations derived in [1, 2].

3. Isotropic minimal subtraction

The algorithm just described in the anisotropic cases is identical with that in the isotropic case.
We are going to highlight only the main differences with what has been explained so far. First,
there is only one type of subspace involved since the bare propagator is equal to p−2n. In that
case, the Feynman integrals to be evaluated in our procedure are written in the form:
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The isotropic integrals are simpler: they can be calculated either using the orthogonal
approximation or exactly. In what follows we prefer to tackle solely the exact computation.
Note that the expansion parameter is now ǫn = 4n − d (d = mn). The ǫn-expansion of those
integrals are given by
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The Wilson functions can be defined in the same way as before, except that now βn =
−ǫn(
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)−1. Using the same procedure as before but keeping in mind the relevant differences
already pointed out, the coupling constant and normalization functions can be shown to be given
by
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Substitution of this value into the Wilson functions and recalling that γφ(n)(u
∗

n) = ηn, whereas

2nd International Conference on Mathematical Modeling in Physical Sciences 2013 IOP Publishing
Journal of Physics: Conference Series 490 (2014) 012232 doi:10.1088/1742-6596/490/1/012232

5



ν−1
n = 2n− ηn − γ̄φ2(n)(u
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n), we obtain the following critical exponents
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+
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4. Conclusion

The minimal subtracion method presented herein produce critical exponents identical to those
computed using normalization conditions using either massless [2] or massive fields [3], albeit
the results are represented in different manners. In conjunction with the minimal subtraction
using massive fields to be developed in the future, this study can unveil further issues in the
problem of Lifshitz quantum field theories [5, 6, 7, 8, 9].
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