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Abstract. Pure metals and special alloys obtained by electron beam melting and refining
(EBMR) in vacuum, using electron beams as a heating source, have a lot of applications in
nuclear and airspace industries, electronics, medicine, etc. An analytical optimization problem
for the EBMR process based on mathematical heat model is proposed. The used criterion
is integral functional minimization of a partial derivative of the temperature in the metal
sample. The investigated technological parameters are the electron beam power, beam radius,
the metal casting velocity, etc. The optimization problem is discretized using a non-stationary
heat model and corresponding adapted Pismen-Rekford numerical scheme, developed by us
and multidimensional trapezional rule. Thus a discrete optimization problem is built where
the criterion is a function of technological process parameters. The discrete optimization
problem is heuristically solved by cluster optimization method. Corresponding software for the
optimization task is developed. The proposed optimization scheme can be applied for quality
improvement of the pure metals (Ta, Ti, Cu, etc.) produced by the modern and ecological-
friendly EBMR process.

1. Introduction
Electron Beam Melting and Refining (EBMR) is a method in the special electrometallurgy for
production of pure metals and alloys and new materials fabrication by scrap recycling [1-3].

The EBMR process of metals and alloys is accomplished in vacuum chamber using electron
beams as a heating source. The raw material is melted, refined and re-solidified in a water-
cooled crucible. The electrons fall on the front side of the feeding material and heat it. The
molten metal as drops fall into the crucible. The top surface of the molten metal in the crucible
is also heated by the e-beam [1-3]. Due to especially difficulties to acquire real time data for
the processes in the liquid pool, the successful application and optimization of EBMR depends
on the adequate mathematical modeling of the heat transfer processes. This allows to make a
study of the influence of the regime parameters and the limiting factors. The most important
information that is needed is about the temperature field in the metal ingot during EBMR which
can’t be precisely evaluated experimentally.

In [4-7] developed stationary and non-stationary heat transfer models are presented and
implemented. The non-stationary model, discretized by a modified Pismen-Rekford scheme
[6, 8], and the corresponding computer program gives opportunity for simulation of the
EBMR process and gaining information about the dynamics of the input and output steams,

2nd International Conference on Mathematical Modeling in Physical Sciences 2013 IOP Publishing
Journal of Physics: Conference Series 490 (2014) 012211 doi:10.1088/1742-6596/490/1/012211

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



temperature fields in vertical and horizontal cross-sections of the ingot, the dynamics of the
geometry of the liquid pool, etc.

The knowledge of the geometry of the crystallization front (liquid/solid boundary) is
important for studying and optimizing the quality of the obtained pure metal after EBMR. The
flatness of the liquid/solid contour (the shape of the molten pools) is directly connected with the
quality of the structure of the obtained metal. The flatness is examined and studied through a
heuristic approach [9-11] developed by Vutova and Mladenov. Still, by now no analytical criteria
for the flatness of the temperature level lines have been proposed.

2. An optimization problem for EBMR of metals
2.1. Derivation
Recall the non-stationary heat model [6] for EBMR of metals and alloys, the equations describing
the heat processes in the cylindrical metal ingot are as follows:
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∂z shows the casting, i.e. the heat added by the poured molten metal; α is the metal’s

emmisivity, σ = 5.6704.10−8[J/s.m2K4] is the Stephan-Bolzman constant; Cp.Wv.T describes
the evaporation losses. Psurf is the beam power density function and V is the casting velocity.

The flatness of the temperature level lines in a vertical cross-section of the cylinder for a fixed
moment of time depends on the values of ∂T

∂r . For fixed moment of the heating time t = tf and

height z = zf , T (r, zf , tf ) is a strictly decreasing function of the variable r and ∂T
∂r ≤ 0.

The problem (1-6) is defined in the domain Ω = [0, R]× [0, H]× [0, F ] and a uniform net is
made:

Wh1,h2,τ = {(ri, zj , tn)|ri = ih1, zj = jh2, tn = nτ ; i = 0, N, j = 0,M, n = 0, P} (7)
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Discretization of A is made via multi-dimensional trapezional rule onto W 1
h1,h2,τ

- a subset of

(7):

W 1
h1,h2,τ = {(ri, zj , tn)|ri = ihi, zj = jh2, tn = nτ ; i = N1, N2, j = M1,M2, n = P1, P2} (8)
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In (8), Ni corresponds to Ri, Mi to Hi, and Pi to Fi, i = 1, 2. The approximation of A is
denoted by A and (9) gives the approximation in terms of S:
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2.2. Optimization problem formulation
The analytical optimization problem is:

A = −
∫∫∫

Ω1

∂T

∂r
drdzdt→ min, (10)

where T is the temperature field determined by the solution of (1-6). The variables that are
controlled in this optimization approach are Psurf (r, t) and V (t).

The discretization of the system (1-6) is made on the net (7) by modified Pismen-Rekfort
scheme [6]. Thus for input functions Psurf (r, t) and V (t), the discrete temperature field

{Tni,j}
n=1,P

i=1,N,j=1,M
is calculated. Hence, A can be calculated over this discrete field by (9). In

this way the analythical problem (10) is transformed to a discrete one which can be solved by
optimization methods. The use of some heuristic methods such as cluster optimization technique
is suitable because A depends on the control variables in a complex and implicit way.

3. Results and discussion
Experiments for EBMR of Ti ingots of length H = 100mm and diameter 2R = 60mm are made
for various values of the beam power Pb and casting velocity V and experimental data about the
concentration of some of the metal’s impurities are obtained [12]. Statistical approach, based
on experimental data about chemical analysis, is applied and optimal process conditions by
minimization of all impurities concentrations are obtained - Pb = 11.25kW, V = 6mm/min, F =
7.37min for focused electron beam with rb = 10mm.

For these Ti ingots at V = 6mm/min and total heating time 7.37min one dimensional
cluster optimization is made for a beam power Pb ∈ [11kW, 20kW ] via developed software. In
the numerical optimization Ω1 is chosen to be [0, R] × [0.5H, 0.85H] × [0.9F, F ]. This choice
is based on the results obtained by the heat model [6]. In Fig.1, a vertical cross-section of
the temperature field is shown for P = 11kW in the 442nd second of the heating. The cluster
analysis shows that the criterion (10) is minimized for Pb = 11kW and confirms the result from
the statistical approach [12]. The proposed optimization technique does not need experimental
data for chemical analysis of the impurities’ concentrations like the approach in [12], which is
an important advantage of the optimization method described in this paper.
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Figure 1. Temperature field (K) in a vertical
cross-section of cylindrical Ti ingot during EBM.
The dimensions of the ingot areH = 100mm, 2R =
60mm,V = 6mm/min, rb = 10mm at the 442s
of the heating process. The orange rectangle is
the domain over which the flatness of the radial
temperature level lines is optimized. Tmelt of Ti is
1941K.

4. Conclusion
For improvement of the technology for acquiring pure metals with EBM, a new analytical
criterion for flatness of the radial temperature level lines is invented. Optimization problem
to minimize this criterion over the solutions of non-stationary heat model for different control
variables is proposed. The criterion for achieving flatness of the liquid pool is discretized
synchronically to the Pismen-Rekford numerical scheme used in the time-dependent heat model.
Cluster optimization technique is applied to find heuristically an optimal technological regime for
EBM of titanium. The beam power value suggested by the criterion is compared and coincides
to the value obtained by experimental data and statistical method. The developed optimization
scheme is promising and can be applied to suggest proper technological regimes for EBMR of
different metals to improve the quality of the obtained new materials.
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