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Abstract. In fusion devices strongly localized intensive sources of impurities may arise
unexpectedly or can be created deliberately through impurity injection. The spreading of
impurities from such sources is essentially three-dimensional and non-stationary phenomenon
involving physical processes of extremely different time scales. Numerical modeling of such
events is still a very challenging task even by using most modern computers. To diminish
drastically the calculation time a ”shell” model has been elaborated that allows to reduce
equations for particle, parallel momentum and energy balances of various ion species to
one-dimensional equations describing the time evolution of radial profiles for several most
characteristic parameters. The assumptions of the ”shell” approach are verified by comparing
its predictions with a numerical solution of one-dimensional time dependent diffusion equation.

1. Introduction
In fusion devices impurities may intrude unexpectedly or can be deliberately injected for various
purposes into the plasmas of hydrogen isotopes. Normally spots through which impurity
particles enter into machines are much smaller than the total surface of the walls bounding
the plasma. The spreading of impurity from such sources is essentially a three-dimensional and
non-stationary, at least at the beginning, process. It includes the mutual transformation of
impurity ions in different charge states by ionization with electrons, their friction and heating
by coulomb collisions with the background ions, etc. Moreover, already at a very moderate
injection rate the local impurity density can be comparable with that of the plasma before
the injection and therefore the impurity ionization can lead to a significant increase of the
electron density here. This affects the ionization process and makes the impurity spreading
process nonlinear. Therefore, a proper numerical modeling of this phenomenon, being of very
importance for the understanding of impurity transport mechanisms and impacts on plasma
behavior, is cumbersome. By keeping in mind that options for parallelization of impurity
transport computations are limited, a straightforward approach to modeling may be extremely
time consuming, even by using the most modern computers.

Difficulties outlined above motivate to develop reduced models and approaches which require
a significantly less calculations but allow, nonetheless, to extract the most important information
about the spreading process. Such an information could be the time evolution of dimensions
along and across the magnetic field of plasma regions occupied predominantly with impurity
ions of a given charge Z, characteristic values of their density, flux and temperature. For low
enough Z the regions in question are nested clouds, expanding in time but remaining small
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compared with the whole plasma volume. For such species the line of thinking outlined above
is realized in the so called ”shell model”, see Refs. [1, 2], where instead of searching for detailed
spatial profiles of impurity parameters their shape are parameterized by analytical expressions.
The latter are approximate solutions of underlying equations and take into account that the
cloud dimensions are controlled by the competition between the spreading of impurity species
in question from their source, where these are generated by the ionization of lower charged ones,
and the ionization into the higher charge state. By integrating three-dimensional fluid transport
equations over some sub-regions of the shells, being the cross-sections by magnetic surfaces of
the regions occupied with impurity ions of the given charge, one can get equations for the time
evolution of key characteristics mentioned above. In Refs. [1, 2] also the shape of impurity
parameter profiles in the radial direction r, perpendicular to the magnetic surfaces, has been
analytically prescribed. Such a prescription is, however, very unsure since the radial profiles
of impurity characteristics are essentially determined by the density and temperature of the
background plasma. The latter are always inhomogeneous in the radial direction because the
particle source is localized predominantly at the edge and heat source - in the core of the plasma.
In the present paper the ”shell” approach is elaborated further to describe the radial structure
of impurity ion shells and is verified by comparing with a direct numerical solution of a diffusion
equation. We use an orthogonal reference system (r, y, l) with the coordinate y aligned on the
magnetic surface perpendicular to the magnetic field that is oriented in the direction l.

2. Basic equations
We consider a jet of impurity neutrals injected into the tokamak confined region through the
outlet of a valve with a square cross-section in the (y, l)-plane, |y| , |z| ≤ b. The outlet is situated
at the last closed flux surface (LCFS), r = a, and is tangential to the LCFS. Neutrals are assumed
moving with the speed V0 in the radial direction r across magnetic surfaces towards the plasma
axis, r = 0. The neutral density n0 is homogeneous inside the jet cross-section and vanishes
outside it. The variation of the n0 radial profile in time t is described by the continuity equation:

∂n0
∂t
− V0

∂n0
∂r

= −ν0n0 (1)

where νZ ≡ kZionne is the ionization frequency of impurity particles of the charge Z, with kZion
being the ionization rate coefficient and ne the electron density; the latter is computed according

to the plasma quasi-neutrality condition ne = ni +
Zmax∑
Z=1

ZnZ , with ni being the density of the

background ions of hydrogen isotopes.
The three-dimensional profile of the density nZ of impurity ions with the charge Z is governed

by the continuity equation [3]:

∂tnZ + ∂r (rΓZr) /r + ∂yΓZy + ∂lΓZl = νZ−1nZ−1 − νZnZ (2)

Here the impurity ion transport in all directions is assumed as diffusion and for the flux density
components we assume ΓZr = −Dr∂rnZ , ΓZy = −Dy∂ynZ and ΓZl = −Dl∂lnZ with prescribed
diffusivity components Dr, Dy and Dl.

In the “shell model” we take into account that the cross-sections by magnetic surfaces of
regions occupied by impurity ions of different charges Z are nested shells. The (Z − 1)-shell
with the dimensions lZ−1 along the magnetic field and δZ−1 across that in the y-direction is the
source region for the Z-ions. Beyond the (Z − 1)-shell the density of Z-ions vanishes at some
characteristic distances lZd and δZd due to ionization into the Z + 1 state. Since the Z-shell is
the source for the Z + 1-ions, the following recurrent relationships can be applied:

lZ ≈ lZ−1 + lZd, δZ ≈ δZ−1 + δZd,
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with l0 = δ0 = b in the case of neutrals, Z = 0. Consider three regions in the Z-shell: the total
shell 0 ≤ |y| , |l|, y-subregion δZ−1 ≤ |y| , 0 ≤ |l| and the l-subregion 0 ≤ |y| , lZ−1 ≤ |l|. The total,

per unit length in the r-direction, numbers of Z-ions in these regions, NZ (t, r) =
∞∫
0
dy
∞∫
0
nZdl,

NZy (t, r) =
∞∫

δZ−1

dy
∞∫
0
nZdl and NZl (t, r) =

∞∫
0
dy

∞∫
lZ−1

nZdl, are governed by the integrals of

equation (2) over the regions:

∂tNZ − ∂r
(
rDr∂r

NZ

r

)
= νZ−1NZ−1 − νZNZ (3)

∂tNZy − ∂r
(
rDr∂r

NZy

r

)
= GZy − νZNZy (4)

∂tNZl − ∂r
(
rDr∂r

NZl

r

)
= GZl − νZNZl (5)

with GZy = −
∞∫
0
Dy∂ynZ (t, r, δZ−1, l) dl and GZl = −

∞∫
0
Dl∂lnZ (t, r, y, lZ−1) dy.

In order to relate GZy and GZl to NZ we apply a method for finding of approximate solutions
of parabolic partial differential equations, e.g., a diffusion one, outlined in Ref. [4]. This approach
is based on the fact that such equations do allow neither periodic sign-changing solutions nor
a similar behavior of individual terms in the equation. It presumes that the solution profile
in certain direction is mostly controlled by the corresponding transport term in the equation
and is not very sensitive to the spatial variation of other terms. Consider, e.g., the variation
of nZ along the coordinate y. In the source region |y| ≤ δZ−1, where the dominant process is
the generation of the Z-ions, equation (2) is written in the form −Dy∂

2
ynZ = S where the right

hand side S combines all other terms, i.e. the source density, time derivative, transport in other
directions and so on. For a constant S the solution to this equation is as follows:

nZ (|y| ≤ δZ−1) ≈ nZ0ϕ (y) (6)

with nZ0 = nZ (y = 0) and ϕ (|y| ≤ δZ−1) = 1 − [1− nZ (δZ−1) /nZ0] (y/δZ−1)
2. In the region

|y| > δZ−1 the decay of the Z-ions due to ionization is of the most importance and −Dy∂
2
ynZ =

−νnZ with some still unknown but assumed constant ν. The solution, vanishing far from the
source, is given by the relation (6) with ϕ (|y| > δZ−1) = nZ (δZ−1) /nZ0 exp [− (|y| − δZ−1) /δZd]
and δZd =

√
Dy/ν. From the continuity of ∂ynZ at y = δZ−1 we get nZ (δZ−1) /nZ0 =

1/ [1 + δZ−1/ (2δZd)] . Similar analytical dependences can be found for the variation of nZ
with l. By using the approximate solutions in the form nZ (t, r, y, l) = nZ0 (t, r)ϕ (t, y)ϕ (t, l),
one obtains NZ = nZ0∆ZLZ , NZy = nZ0∆ZdLZ , NZl = nZ0∆ZLZd, and

GZy = DyNZ/ (δZ−1/2 + δZd) /∆Z (7)

GZl = DlNZ/ (lZ−1/2 + lZd) /LZ

where ∆Z = ∆Zs + ∆Zd, LZ = LZs + LZd, with ∆Zs = δZ−1 (δZ−1/3 + δZd) / (δZ−1/2 + δZd),
∆Zd = δ2Zd/ (δZ−1/2 + δZd), LZs = lZ−1 (lZ−1/3 + lZd) / (lZ−1/2 + lZd) and LZd =
l2Zd/ (lZ−1/2 + lZd). These formulas allow to interrelate δZd and lZd with NZ , NZy and NZl:

δZd = δZ−1
1 +

√
(4NZ/NZy − 1) /3

2 (NZ/NZy − 1)

lZd = lZ−1
1 +

√
(4NZ/NZl − 1) /3

2 (NZ/NZl − 1)
(8)
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Figure 1. Solution of the diffusion equation (9) found by solving it numerically (a) and by
integrating ordinary differential equations (10) deduced in the “shell” approximation (b).

Thus the time evolution of three-dimensional profiles of the impurity ion densities nZ (t, r, y, l)
can be approximately modeled by solving one-dimensional equations (1) and (3-5) with relations
(7), (8). The boundary condition to equation (1) is a prescribed density of neutrals at the
injection outlet, n0 (t, a, 0, 0); boundary conditions to NZ , NZy and NZl follow from those for
nZ , corresponding to zero derivatives on the plasma axis r = 0, ∂rNZ = ∂rNZy = ∂rNZl = 0, and
prescribed decay lengths δn at the LCFS r = a, ∂rNZ/NZ = ∂rNZy/NZy = ∂rNZl/NZl = −1/δn.
The results for modeling of the penetration process of carbon impurity into a relatively cold edge
of Ohmic TEXTOR plasma and of argon into hot H-mode plasma in JET obtained with the
”shell” approach are presented in Ref. [5].

3. Verification of ”shell” approach
To verify equation (6) we compare predictions of shell approximation with the numerical solution
for one-dimensional diffusion equation:

∂tn− ∂2yn = Θ (δ0 − |y|)− νn (9)

where Θ (y < 0) = 0,Θ (y ≥ 0) = 1 is the Heaviside function. In this case the shell variables N
and Ny are governed by ordinary differential equations:

dN/dt = δ0 − νN, dNy/dt =
4N/Ny − 4[

1 +
√

(4N/Ny − 1) /3
]2 N −Ny

δ20
− νNy (10)

Figure 1a shows n (t, y) computed by solving numerically equation (9) and figure (1b) -
equations (10) for δ0 = 0.03, ν = 10, initial condition n (0, y) = 0 and boundary conditions
∂n/∂y (t, 0) = ∂n/∂y (t, 1) = 0. The difference in the central values n (t, 0) does not exceed 20%
and the maximum deviation is approached at t ≈ 0.1.
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