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Abstract. The electromagnetic resonant structures and their perturbations have been found
their way in many applications in microwave engineering. Analysis of these structures using
finite element method results in a generalized eigenvalue problem, where the eigenvalues
correspond to the resonant frequencies, and the eigenvectors correspond to the resonant modes.
The perturbations of resonant structures yield perturbed eigenvalue problem and can be solved
by eigenvalue perturbation methods, effectively. Combining finite element method with step
by step eigenvalue perturbation method yields parametric history with respect to perturbation
parameter. In this study perturbation of a microwave ring resonator placed in a metalic enclosure
has been examined, combining the vector finite element and the step–by–step generalized
eigenvalue perturbation methods.

1. Introduction
Material or geometrical perturbations of microwave resonant structures results in a generalized
eigenvalue-eigenvector perturbation problem. For small perturbations of these structures, the
well established classical perturbation technique can be enough [1]. However, this technique may
not be sufficient for large perturbations. Numerical techniques are preferred for analysis of such
perturbation problems for which an analitical solution rarely exist. In this respect, the Finite
Element Method (FEM) can be used, effectively [2]. If such resonant structures are perturbed by
changing a parameter, then analysis reduces to a generalized eigenvalue-eigenvector perturbation
problem [3]. When optimization of resonant structures with respect to a geometrical or material
parameter is required, FEM can be used to solve the problem by analyzing the entire structure
for all parametric values. Meanwhile, if a parametric history data of this process is desired,
the approach requires the repetitive solution of the geometry for each parameter value. For
large meshes and highly granular parameter variations, the process can be time consuming and
computational cost is high. For such cases, the step–by–step generalized eigenvalue perturbation
method is an efficient technique [4, 5]. In this study, the step-by-step perturbation technique
combined with vector FEM had been investigated. Results are obtained by three dimensional
vector FEM code specifically developed for this purpose. Vector FEM formulation is chosen
since it is easier to enforce the boundary conditions [2].

In previous studies, it is shown that step by step perturbation technique is effective in
conjunction with the moment method and the nodal FEM [5, 6]. Particular advantage of
eigenvalue perturbation technique is due to the fact that the mass and the stiffness matrices
produced by FEM are inherently symmetric positive definite. Therefore, the problem can be
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reduced to tracking of few eigenvalues of interest with simple similarity transformations. In
this study, the vector FEM is used in conjunction with the generalized step–by–step eigenvalue-
eigenvector perturbation method for parametric history analysis of a perturbed ring resonator.
At first, the basic formulation about the vector FEM has been summarized. Then the
combination of the vector FEM with the step-by-step eigenvalue perturbation problem has been
given. In the last section, a sample geometry and obtained results by three dimensional vector
FEM code have been given. The results have been compared to the results of commercial Ansoft
HFSS TM electromagnetic FEM software.

2. Vector FEM for the solution of electromagnetic resonance problems
Let the electric field vector defined in a region Ω be E = [Ex(x, y, z) Ey(x, y, z) Ez(x, y, z)]

T

in phasor form. Then, E satisfies the Helmholtz equations. The solution of the Helmholtz
equations minimizes the following functional,

F (E) =
1

2

∫
Ω

1

µr
(∇×E) · (∇×E)− k2

oεrE ·EdΩ. (1)

In the FEM analysis, the problem domain Ω is divided non-overlapping sub-domains or elements
such that Ωe ∈ Ω e = 1, 2, . . . ,M . In vector FEM the field components in each region are
expressed in terms of the fields along the edges of Ωe. For tetrahedral elements the electric

field in each element can be approximated as Ẽ
e

=
6∑

i=1
N e

iE
e
i where N e

i are the vector basis

functions. Defining elemantal matrices, that can be easily evaluated by well known formulation
given in [2], as

Ae M
=

∫
Ωe

1

µer
(∇×N e)T (∇×N e) dΩ Be M

=

∫
Ωe

εerN
eTN edΩ (2)

and substituting these expressions in (3) gives,

F (Ẽ) =
1

2

M∑
e=1

ẼeTAeẼe − k2
oẼ

eTBeẼe. (3)

Applying the standart assembly procedure in FEM analysis, the variational problem of
minimizing (3) with respect to Ee

i finally reduces the solution of following eigenvalue/eigenvector
problem

AẼ = k2
oBẼ (4)

where ko is the wave number. The stiffness matrix A and the mass matrix B are symmetric
and (semi)-positive definite matrices.

3. Step-by-step perturbation
We can recast (4) in the following form

L0φ = λM0φ λ = ω2 (5)

where L0 and M0 are the stiffness and mass matrices of the base system, ω is the resonant
frequency, λ’s and φ’s are the eignvalues and eigenvectors of the associated problem, respectively.
Assume that the solution of (5) is obtained and the base system is modified in such a way that
the matrices of the perturbed system can be written using unperturbed matrices as:

[L0 + f(p)Lp]φ(p) = λ(p) [M0 + g(p)Mp]φ(p) (6)
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Figure 1. Cylindrical cavity perturbed by a dielectric ring resonator

It has been shown that even large perturbations can be handled by step-by-step perturbation
method [5, 4]. The solution of (6) using step by step perturbation technique in conjunction with
FEM is particularly advantageous. The resulting symmetric positive (semi)-definite matrices
due to FEM formulation, leads to perturbation of diagonal matrix pencils and the formulation
can exploit orthogonality of eigenvectors using similarity transformations instead of heavy QZ-
factorizations suggested in [5].

Assume that the dielectric permittivity in some sub-region of Ω` ⊂ Ω is to be varied in
[ε`, εmax]. The parametric history with respect to ε` can be obtained using the procedure
explained in [5]. If K denotes the number of steps, the relative dielectric constant and the
perturbation parameter at the kth step can be written as

ε
(k)
` = ε` + p(k) (εmax − ε`) (7)

p(k) = p(k−1) + ∆p(k). (8)

The functions f(.) and g(.) in (6) are expressed as

f (k) =

(
1

ε
(k)
`

− 1

ε`

)
∆f (k) = −∆p(k)(εmax − ε`)

ε
(k)
` ε

(k−1)
`

(9a)

g(k) = p(k)(εmax − ε`) ∆g(k) = ∆p(k)(εmax − ε`) (9b)

The problem (6) can be reduced to[
Λ(k−1) + ∆f (k)L(k)

p

]
Y (k) =

[
I + ∆g(k)M (k)

p

]
Y (k)Λ(k) (10)

L(k)
p = Φ(k−1)TLpΦ

(k−1), M (k)
p = Φ(k−1)TMpΦ

(k−1) (11)

where Λ(k) is the diagonal matrix of the eigenvalues to be tracked and Φ(k) are the eigenvectors

at step k, using the transformation Φ(k) M
= Φ̄

(k−1)
Y (k). This is just perturbation of (Λ, I)

diagonal matrix pencil, and Lp and Mp can easily be obtained using Lo and M o. Hence, the
perturbed solutions can be calculated quite efficiently.

4. Sample problem
The proposed approach has been tested on the structure given in Figure 1 which represents
a dielectric ring (region 2) placed in a perfectly conducting enclosure. The setup is useful for
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measurement of dielectric constants of fluid substances placed in region 4, particularly. For
a sample problem, relative dielectric constant of the region 2 is fixed to 10 and the dielectric
constant of the region 4 is changed from value 1 to 10 with no substrate region 3 (hs = 0).
The results are compared by the HFSS simulation results, preliminarily. Figure 2 shows the
parametric history calculated with both methods on two different but comparable meshes. The
relative error between to simulations is about 1.15% at the worst case when ε` = 10, although
the step by step perturbation approach is much faster.
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Figure 2. The parametric history results for dielectric ring resonator perturbation.

5. Conclusion
The vector FEM and step by step eigenvalue perturbation for the analysis of microwave
resonant structures has been inspected. Analysis using the eigenvalue perturbations is practical,
since it does not require the solution of eigenvalue problem for each perturbation step. For
large perturbation cases, the step-by-step perturbation method is is particularly advantageous
combined with FEM, since FEM formulation results in symmetric positive definite matrix
pencils. The proposed method is tested on the perturbation problem of a dielectric ring.
The parametric history analysis with respect to dielectric permittivity of the perturber is
presented. The results are also compared with the Ansort HFSS TMresults for the sample
problem. Preliminary results suggest that the method is promising.
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